QuantumLimitGraph-v2 / quantum_benchmark_harness.py
Nurcholish's picture
Upload 13 files
b793755 verified
# -*- coding: utf-8 -*-
"""
Stage 4: Evaluation Harness → Quantum Benchmarking
Classical benchmarks are static and sequential. Quantum benchmarking
allows probabilistic, multi-dimensional scoring with parallel evaluation
across languages and styles using quantum circuits.
"""
import numpy as np
from typing import Dict, List, Tuple, Optional, Any, Callable
import json
import time
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.quantum_info import Statevector, random_statevector
from qiskit_aer import AerSimulator
import pennylane as qml
from pennylane import numpy as pnp
import logging
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass
logger = logging.getLogger(__name__)
@dataclass
class QuantumBenchmarkResult:
"""Data class for quantum benchmark results."""
agent_id: str
language: str
alignment_loss: float
diversity_score: float
semantic_coverage: float
quantum_coherence: float
entanglement_measure: float
overall_score: float
measurement_counts: Dict[str, int]
execution_time: float
class QuantumBenchmarkHarness:
"""
Quantum-enhanced benchmarking harness for LIMIT-Graph evaluation.
Simulates agent behavior across languages and styles using quantum circuits,
scoring alignment loss, diversity, and semantic coverage in parallel.
"""
def __init__(self, max_qubits: int = 24, languages: List[str] = None):
"""Initialize quantum benchmark harness."""
self.max_qubits = max_qubits
self.languages = languages or ['indonesian', 'arabic', 'spanish', 'english', 'chinese']
self.simulator = AerSimulator()
# Benchmark state
self.benchmark_circuits = {}
self.evaluation_history = []
self.quantum_leaderboard = {}
# PennyLane device for variational circuits
self.dev = qml.device('default.qubit', wires=max_qubits)
logger.info(f"Initialized QuantumBenchmarkHarness with {max_qubits} qubits for {len(self.languages)} languages")
def create_quantum_benchmark_circuit(self, agent_params: Dict[str, Any],
language: str, task_type: str) -> QuantumCircuit:
"""
Create quantum circuit for benchmarking agent performance.
Args:
agent_params: Agent parameters to benchmark
language: Target language for evaluation
task_type: Type of task (alignment, diversity, coverage)
Returns:
Quantum benchmark circuit
"""
# Determine circuit size based on agent complexity
agent_weights = agent_params.get('weights', [1.0])
num_qubits = min(len(agent_weights), self.max_qubits)
qreg = QuantumRegister(num_qubits, f'{task_type}_eval')
creg = ClassicalRegister(num_qubits, 'measurements')
circuit = QuantumCircuit(qreg, creg)
# Initialize agent state
for i, weight in enumerate(agent_weights[:num_qubits]):
# Encode weight as rotation angle
angle = weight * np.pi if abs(weight) <= 1 else np.pi
circuit.ry(angle, qreg[i])
# Language-specific encoding with Chinese integration
language_encodings = {
'indonesian': {'phase': np.pi/6, 'entangle_pattern': 'linear'},
'arabic': {'phase': np.pi/4, 'entangle_pattern': 'circular'},
'spanish': {'phase': np.pi/3, 'entangle_pattern': 'star'},
'english': {'phase': np.pi/2, 'entangle_pattern': 'complete'},
'chinese': {'phase': np.pi/5, 'entangle_pattern': 'hierarchical'}
}
lang_config = language_encodings.get(language, language_encodings['english'])
# Apply language-specific phase
for i in range(num_qubits):
circuit.rz(lang_config['phase'], qreg[i])
# Create entanglement pattern
if lang_config['entangle_pattern'] == 'linear':
for i in range(num_qubits - 1):
circuit.cx(qreg[i], qreg[i + 1])
elif lang_config['entangle_pattern'] == 'circular':
for i in range(num_qubits - 1):
circuit.cx(qreg[i], qreg[i + 1])
if num_qubits > 2:
circuit.cx(qreg[num_qubits - 1], qreg[0])
elif lang_config['entangle_pattern'] == 'star':
for i in range(1, num_qubits):
circuit.cx(qreg[0], qreg[i])
elif lang_config['entangle_pattern'] == 'complete':
for i in range(num_qubits):
for j in range(i + 1, num_qubits):
circuit.cx(qreg[i], qreg[j])
elif lang_config['entangle_pattern'] == 'hierarchical':
# Chinese hierarchical pattern - tree-like structure
for level in range(int(np.log2(num_qubits)) + 1):
for i in range(0, num_qubits, 2**(level+1)):
if i + 2**level < num_qubits:
circuit.cx(qreg[i], qreg[i + 2**level])
# Task-specific operations
if task_type == 'alignment':
# Add alignment-specific gates
for i in range(num_qubits):
circuit.rx(np.pi/8, qreg[i])
elif task_type == 'diversity':
# Add diversity-promoting gates
for i in range(num_qubits):
circuit.ry(np.pi/6, qreg[i])
elif task_type == 'coverage':
# Add coverage-measuring gates
for i in range(num_qubits):
circuit.rz(np.pi/4, qreg[i])
circuit_key = f"{language}_{task_type}_{hash(str(agent_params))}"
self.benchmark_circuits[circuit_key] = circuit
logger.info(f"Created quantum benchmark circuit for {language} {task_type}: {num_qubits} qubits")
return circuit
def quantum_alignment_evaluation(self, agent_params: Dict[str, Any],
reference_params: Dict[str, Any],
language: str) -> float:
"""
Evaluate agent alignment using quantum interference.
Args:
agent_params: Agent parameters to evaluate
reference_params: Reference/target parameters
language: Evaluation language
Returns:
Quantum alignment score (0-1)
"""
# Create circuits for agent and reference
agent_circuit = self.create_quantum_benchmark_circuit(agent_params, language, 'alignment')
ref_circuit = self.create_quantum_benchmark_circuit(reference_params, language, 'alignment')
# Create interference circuit
num_qubits = min(agent_circuit.num_qubits, ref_circuit.num_qubits)
qreg = QuantumRegister(num_qubits * 2, 'interference')
circuit = QuantumCircuit(qreg)
# Prepare agent state in first half
for i in range(num_qubits):
weights = agent_params.get('weights', [1.0])
if i < len(weights):
angle = weights[i] * np.pi if abs(weights[i]) <= 1 else np.pi
circuit.ry(angle, qreg[i])
# Prepare reference state in second half
for i in range(num_qubits):
ref_weights = reference_params.get('weights', [1.0])
if i < len(ref_weights):
angle = ref_weights[i] * np.pi if abs(ref_weights[i]) <= 1 else np.pi
circuit.ry(angle, qreg[i + num_qubits])
# Create interference through controlled operations
for i in range(num_qubits):
circuit.cx(qreg[i], qreg[i + num_qubits])
# Measure interference pattern
circuit.measure_all()
job = self.simulator.run(circuit, shots=1024)
result = job.result()
counts = result.get_counts()
# Calculate alignment from interference pattern
total_shots = sum(counts.values())
# Look for constructive interference (even parity states)
constructive_counts = sum(count for state, count in counts.items()
if state.count('1') % 2 == 0)
alignment_score = constructive_counts / total_shots
logger.info(f"Quantum alignment for {language}: {alignment_score:.4f}")
return alignment_score
def quantum_diversity_measurement(self, agent_params: Dict[str, Any],
language: str, num_samples: int = 10) -> float:
"""
Measure agent diversity using quantum state sampling.
Args:
agent_params: Agent parameters
language: Target language
num_samples: Number of quantum samples
Returns:
Diversity score (0-1)
"""
circuit = self.create_quantum_benchmark_circuit(agent_params, language, 'diversity')
# Sample multiple quantum states
samples = []
for _ in range(num_samples):
# Add random rotations for sampling
sample_circuit = circuit.copy()
for qubit in range(circuit.num_qubits):
random_angle = np.random.uniform(0, np.pi/4)
sample_circuit.ry(random_angle, qubit)
sample_circuit.measure_all()
job = self.simulator.run(sample_circuit, shots=100)
result = job.result()
counts = result.get_counts()
# Get most probable state
most_probable = max(counts.keys(), key=counts.get)
samples.append(most_probable)
# Calculate diversity as unique states ratio
unique_samples = len(set(samples))
diversity_score = unique_samples / num_samples
logger.info(f"Quantum diversity for {language}: {diversity_score:.4f}")
return diversity_score
def quantum_semantic_coverage(self, agent_params: Dict[str, Any],
language: str, semantic_space_dim: int = 16) -> float:
"""
Measure semantic coverage using quantum state space exploration.
Args:
agent_params: Agent parameters
language: Target language
semantic_space_dim: Dimension of semantic space
Returns:
Coverage score (0-1)
"""
circuit = self.create_quantum_benchmark_circuit(agent_params, language, 'coverage')
# Create semantic space exploration circuit
num_qubits = min(semantic_space_dim, self.max_qubits)
qreg = QuantumRegister(num_qubits, 'semantic_space')
explore_circuit = QuantumCircuit(qreg)
# Initialize uniform superposition
for i in range(num_qubits):
explore_circuit.h(qreg[i])
# Apply agent-specific transformations
weights = agent_params.get('weights', [1.0])
for i, weight in enumerate(weights[:num_qubits]):
angle = weight * np.pi if abs(weight) <= 1 else np.pi
explore_circuit.ry(angle, qreg[i])
# Language-specific semantic modulation
lang_phases = {
'indonesian': np.pi/6, 'arabic': np.pi/4, 'spanish': np.pi/3,
'english': np.pi/2, 'chinese': np.pi/5
}
phase = lang_phases.get(language, np.pi/4)
for i in range(num_qubits):
explore_circuit.rz(phase, qreg[i])
# Measure coverage
explore_circuit.measure_all()
job = self.simulator.run(explore_circuit, shots=2048)
result = job.result()
counts = result.get_counts()
# Calculate coverage as entropy of measurement distribution
total_shots = sum(counts.values())
probabilities = np.array([count/total_shots for count in counts.values()])
# Normalized entropy as coverage measure
max_entropy = np.log2(len(counts))
entropy = -np.sum(probabilities * np.log2(probabilities + 1e-10))
coverage_score = entropy / max_entropy if max_entropy > 0 else 0.0
logger.info(f"Quantum semantic coverage for {language}: {coverage_score:.4f}")
return coverage_score
def parallel_quantum_evaluation(self, agent_params: Dict[str, Any],
reference_params: Dict[str, Any] = None) -> Dict[str, QuantumBenchmarkResult]:
"""
Perform parallel quantum evaluation across all languages.
Args:
agent_params: Agent parameters to evaluate
reference_params: Reference parameters for alignment
Returns:
Dictionary of benchmark results per language
"""
if reference_params is None:
# Create default reference parameters
reference_params = {'weights': [0.5] * len(agent_params.get('weights', [1.0]))}
results = {}
def evaluate_language(language: str) -> QuantumBenchmarkResult:
start_time = time.time()
# Parallel quantum evaluations
alignment_loss = 1.0 - self.quantum_alignment_evaluation(agent_params, reference_params, language)
diversity_score = self.quantum_diversity_measurement(agent_params, language)
semantic_coverage = self.quantum_semantic_coverage(agent_params, language)
# Quantum coherence measurement
circuit = self.create_quantum_benchmark_circuit(agent_params, language, 'alignment')
job = self.simulator.run(circuit, shots=1024)
result = job.result()
counts = result.get_counts()
# Calculate quantum coherence
total_shots = sum(counts.values())
probabilities = np.array([count/total_shots for count in counts.values()])
coherence = 1.0 - (-np.sum(probabilities * np.log2(probabilities + 1e-10)) / np.log2(len(counts)))
# Entanglement measure (simplified)
entanglement = min(1.0, len([s for s in counts.keys() if s.count('1') > 1]) / len(counts))
# Overall score (weighted combination)
overall_score = (
0.3 * (1.0 - alignment_loss) +
0.25 * diversity_score +
0.25 * semantic_coverage +
0.1 * coherence +
0.1 * entanglement
)
execution_time = time.time() - start_time
return QuantumBenchmarkResult(
agent_id=agent_params.get('id', 'unknown'),
language=language,
alignment_loss=alignment_loss,
diversity_score=diversity_score,
semantic_coverage=semantic_coverage,
quantum_coherence=coherence,
entanglement_measure=entanglement,
overall_score=overall_score,
measurement_counts=counts,
execution_time=execution_time
)
# Parallel execution across languages
with ThreadPoolExecutor(max_workers=len(self.languages)) as executor:
future_to_lang = {executor.submit(evaluate_language, lang): lang for lang in self.languages}
for future in future_to_lang:
language = future_to_lang[future]
try:
result = future.result()
results[language] = result
except Exception as e:
logger.error(f"Evaluation failed for {language}: {e}")
# Create fallback result
results[language] = QuantumBenchmarkResult(
agent_id=agent_params.get('id', 'unknown'),
language=language,
alignment_loss=1.0,
diversity_score=0.0,
semantic_coverage=0.0,
quantum_coherence=0.0,
entanglement_measure=0.0,
overall_score=0.0,
measurement_counts={},
execution_time=0.0
)
# Store in evaluation history
self.evaluation_history.append({
'agent_params': agent_params,
'results': results,
'timestamp': time.time()
})
logger.info(f"Parallel quantum evaluation completed for {len(results)} languages")
return results
def update_quantum_leaderboard(self, agent_id: str, results: Dict[str, QuantumBenchmarkResult]):
"""
Update quantum-aware leaderboard with new results.
Args:
agent_id: Agent identifier
results: Benchmark results per language
"""
# Calculate aggregate scores
overall_scores = [result.overall_score for result in results.values()]
aggregate_score = np.mean(overall_scores)
# Calculate quantum metrics
coherence_scores = [result.quantum_coherence for result in results.values()]
entanglement_scores = [result.entanglement_measure for result in results.values()]
leaderboard_entry = {
'agent_id': agent_id,
'aggregate_score': aggregate_score,
'language_scores': {lang: result.overall_score for lang, result in results.items()},
'quantum_coherence': np.mean(coherence_scores),
'quantum_entanglement': np.mean(entanglement_scores),
'alignment_performance': np.mean([1.0 - result.alignment_loss for result in results.values()]),
'diversity_performance': np.mean([result.diversity_score for result in results.values()]),
'coverage_performance': np.mean([result.semantic_coverage for result in results.values()]),
'total_execution_time': sum(result.execution_time for result in results.values()),
'languages_evaluated': list(results.keys()),
'timestamp': time.time()
}
self.quantum_leaderboard[agent_id] = leaderboard_entry
logger.info(f"Updated quantum leaderboard for {agent_id}: score = {aggregate_score:.4f}")
def get_quantum_leaderboard(self, top_k: int = 10) -> List[Dict[str, Any]]:
"""
Get top-k entries from quantum leaderboard.
Args:
top_k: Number of top entries to return
Returns:
Sorted leaderboard entries
"""
sorted_entries = sorted(
self.quantum_leaderboard.values(),
key=lambda x: x['aggregate_score'],
reverse=True
)
return sorted_entries[:top_k]
def export_benchmark_results(self, filepath: str):
"""Export benchmark results to JSON file."""
export_data = {
'quantum_leaderboard': self.quantum_leaderboard,
'evaluation_history': [
{
'agent_params': entry['agent_params'],
'results': {
lang: {
'agent_id': result.agent_id,
'language': result.language,
'alignment_loss': result.alignment_loss,
'diversity_score': result.diversity_score,
'semantic_coverage': result.semantic_coverage,
'quantum_coherence': result.quantum_coherence,
'entanglement_measure': result.entanglement_measure,
'overall_score': result.overall_score,
'execution_time': result.execution_time
} for lang, result in entry['results'].items()
},
'timestamp': entry['timestamp']
} for entry in self.evaluation_history
],
'benchmark_config': {
'max_qubits': self.max_qubits,
'languages': self.languages,
'total_evaluations': len(self.evaluation_history)
}
}
with open(filepath, 'w') as f:
json.dump(export_data, f, indent=2)
logger.info(f"Exported benchmark results to {filepath}")
def get_quantum_benchmark_metrics(self) -> Dict[str, Any]:
"""Get comprehensive metrics for quantum benchmarking."""
metrics = {
'max_qubits': self.max_qubits,
'languages_supported': len(self.languages),
'total_evaluations': len(self.evaluation_history),
'benchmark_circuits_created': len(self.benchmark_circuits),
'leaderboard_entries': len(self.quantum_leaderboard),
'quantum_speedup_factor': len(self.languages) ** 2, # Parallel evaluation advantage
}
if self.evaluation_history:
# Analyze evaluation performance
execution_times = []
overall_scores = []
for entry in self.evaluation_history:
for result in entry['results'].values():
execution_times.append(result.execution_time)
overall_scores.append(result.overall_score)
metrics.update({
'average_execution_time': np.mean(execution_times),
'average_overall_score': np.mean(overall_scores),
'score_variance': np.var(overall_scores),
'evaluation_efficiency': len(self.languages) / np.mean(execution_times) if execution_times else 0
})
return metrics