|
|
|
|
|
"""
|
|
|
Stage 4: Evaluation Harness → Quantum Benchmarking
|
|
|
|
|
|
Classical benchmarks are static and sequential. Quantum benchmarking
|
|
|
allows probabilistic, multi-dimensional scoring with parallel evaluation
|
|
|
across languages and styles using quantum circuits.
|
|
|
"""
|
|
|
|
|
|
import numpy as np
|
|
|
from typing import Dict, List, Tuple, Optional, Any, Callable
|
|
|
import json
|
|
|
import time
|
|
|
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
|
|
|
from qiskit.quantum_info import Statevector, random_statevector
|
|
|
from qiskit_aer import AerSimulator
|
|
|
import pennylane as qml
|
|
|
from pennylane import numpy as pnp
|
|
|
import logging
|
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
from dataclasses import dataclass
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
|
class QuantumBenchmarkResult:
|
|
|
"""Data class for quantum benchmark results."""
|
|
|
agent_id: str
|
|
|
language: str
|
|
|
alignment_loss: float
|
|
|
diversity_score: float
|
|
|
semantic_coverage: float
|
|
|
quantum_coherence: float
|
|
|
entanglement_measure: float
|
|
|
overall_score: float
|
|
|
measurement_counts: Dict[str, int]
|
|
|
execution_time: float
|
|
|
|
|
|
class QuantumBenchmarkHarness:
|
|
|
"""
|
|
|
Quantum-enhanced benchmarking harness for LIMIT-Graph evaluation.
|
|
|
|
|
|
Simulates agent behavior across languages and styles using quantum circuits,
|
|
|
scoring alignment loss, diversity, and semantic coverage in parallel.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, max_qubits: int = 24, languages: List[str] = None):
|
|
|
"""Initialize quantum benchmark harness."""
|
|
|
self.max_qubits = max_qubits
|
|
|
self.languages = languages or ['indonesian', 'arabic', 'spanish', 'english', 'chinese']
|
|
|
self.simulator = AerSimulator()
|
|
|
|
|
|
|
|
|
self.benchmark_circuits = {}
|
|
|
self.evaluation_history = []
|
|
|
self.quantum_leaderboard = {}
|
|
|
|
|
|
|
|
|
self.dev = qml.device('default.qubit', wires=max_qubits)
|
|
|
|
|
|
logger.info(f"Initialized QuantumBenchmarkHarness with {max_qubits} qubits for {len(self.languages)} languages")
|
|
|
|
|
|
def create_quantum_benchmark_circuit(self, agent_params: Dict[str, Any],
|
|
|
language: str, task_type: str) -> QuantumCircuit:
|
|
|
"""
|
|
|
Create quantum circuit for benchmarking agent performance.
|
|
|
|
|
|
Args:
|
|
|
agent_params: Agent parameters to benchmark
|
|
|
language: Target language for evaluation
|
|
|
task_type: Type of task (alignment, diversity, coverage)
|
|
|
|
|
|
Returns:
|
|
|
Quantum benchmark circuit
|
|
|
"""
|
|
|
|
|
|
agent_weights = agent_params.get('weights', [1.0])
|
|
|
num_qubits = min(len(agent_weights), self.max_qubits)
|
|
|
|
|
|
qreg = QuantumRegister(num_qubits, f'{task_type}_eval')
|
|
|
creg = ClassicalRegister(num_qubits, 'measurements')
|
|
|
circuit = QuantumCircuit(qreg, creg)
|
|
|
|
|
|
|
|
|
for i, weight in enumerate(agent_weights[:num_qubits]):
|
|
|
|
|
|
angle = weight * np.pi if abs(weight) <= 1 else np.pi
|
|
|
circuit.ry(angle, qreg[i])
|
|
|
|
|
|
|
|
|
language_encodings = {
|
|
|
'indonesian': {'phase': np.pi/6, 'entangle_pattern': 'linear'},
|
|
|
'arabic': {'phase': np.pi/4, 'entangle_pattern': 'circular'},
|
|
|
'spanish': {'phase': np.pi/3, 'entangle_pattern': 'star'},
|
|
|
'english': {'phase': np.pi/2, 'entangle_pattern': 'complete'},
|
|
|
'chinese': {'phase': np.pi/5, 'entangle_pattern': 'hierarchical'}
|
|
|
}
|
|
|
|
|
|
lang_config = language_encodings.get(language, language_encodings['english'])
|
|
|
|
|
|
|
|
|
for i in range(num_qubits):
|
|
|
circuit.rz(lang_config['phase'], qreg[i])
|
|
|
|
|
|
|
|
|
if lang_config['entangle_pattern'] == 'linear':
|
|
|
for i in range(num_qubits - 1):
|
|
|
circuit.cx(qreg[i], qreg[i + 1])
|
|
|
elif lang_config['entangle_pattern'] == 'circular':
|
|
|
for i in range(num_qubits - 1):
|
|
|
circuit.cx(qreg[i], qreg[i + 1])
|
|
|
if num_qubits > 2:
|
|
|
circuit.cx(qreg[num_qubits - 1], qreg[0])
|
|
|
elif lang_config['entangle_pattern'] == 'star':
|
|
|
for i in range(1, num_qubits):
|
|
|
circuit.cx(qreg[0], qreg[i])
|
|
|
elif lang_config['entangle_pattern'] == 'complete':
|
|
|
for i in range(num_qubits):
|
|
|
for j in range(i + 1, num_qubits):
|
|
|
circuit.cx(qreg[i], qreg[j])
|
|
|
elif lang_config['entangle_pattern'] == 'hierarchical':
|
|
|
|
|
|
for level in range(int(np.log2(num_qubits)) + 1):
|
|
|
for i in range(0, num_qubits, 2**(level+1)):
|
|
|
if i + 2**level < num_qubits:
|
|
|
circuit.cx(qreg[i], qreg[i + 2**level])
|
|
|
|
|
|
|
|
|
if task_type == 'alignment':
|
|
|
|
|
|
for i in range(num_qubits):
|
|
|
circuit.rx(np.pi/8, qreg[i])
|
|
|
elif task_type == 'diversity':
|
|
|
|
|
|
for i in range(num_qubits):
|
|
|
circuit.ry(np.pi/6, qreg[i])
|
|
|
elif task_type == 'coverage':
|
|
|
|
|
|
for i in range(num_qubits):
|
|
|
circuit.rz(np.pi/4, qreg[i])
|
|
|
|
|
|
circuit_key = f"{language}_{task_type}_{hash(str(agent_params))}"
|
|
|
self.benchmark_circuits[circuit_key] = circuit
|
|
|
|
|
|
logger.info(f"Created quantum benchmark circuit for {language} {task_type}: {num_qubits} qubits")
|
|
|
return circuit
|
|
|
|
|
|
def quantum_alignment_evaluation(self, agent_params: Dict[str, Any],
|
|
|
reference_params: Dict[str, Any],
|
|
|
language: str) -> float:
|
|
|
"""
|
|
|
Evaluate agent alignment using quantum interference.
|
|
|
|
|
|
Args:
|
|
|
agent_params: Agent parameters to evaluate
|
|
|
reference_params: Reference/target parameters
|
|
|
language: Evaluation language
|
|
|
|
|
|
Returns:
|
|
|
Quantum alignment score (0-1)
|
|
|
"""
|
|
|
|
|
|
agent_circuit = self.create_quantum_benchmark_circuit(agent_params, language, 'alignment')
|
|
|
ref_circuit = self.create_quantum_benchmark_circuit(reference_params, language, 'alignment')
|
|
|
|
|
|
|
|
|
num_qubits = min(agent_circuit.num_qubits, ref_circuit.num_qubits)
|
|
|
qreg = QuantumRegister(num_qubits * 2, 'interference')
|
|
|
circuit = QuantumCircuit(qreg)
|
|
|
|
|
|
|
|
|
for i in range(num_qubits):
|
|
|
weights = agent_params.get('weights', [1.0])
|
|
|
if i < len(weights):
|
|
|
angle = weights[i] * np.pi if abs(weights[i]) <= 1 else np.pi
|
|
|
circuit.ry(angle, qreg[i])
|
|
|
|
|
|
|
|
|
for i in range(num_qubits):
|
|
|
ref_weights = reference_params.get('weights', [1.0])
|
|
|
if i < len(ref_weights):
|
|
|
angle = ref_weights[i] * np.pi if abs(ref_weights[i]) <= 1 else np.pi
|
|
|
circuit.ry(angle, qreg[i + num_qubits])
|
|
|
|
|
|
|
|
|
for i in range(num_qubits):
|
|
|
circuit.cx(qreg[i], qreg[i + num_qubits])
|
|
|
|
|
|
|
|
|
circuit.measure_all()
|
|
|
|
|
|
job = self.simulator.run(circuit, shots=1024)
|
|
|
result = job.result()
|
|
|
counts = result.get_counts()
|
|
|
|
|
|
|
|
|
total_shots = sum(counts.values())
|
|
|
|
|
|
|
|
|
constructive_counts = sum(count for state, count in counts.items()
|
|
|
if state.count('1') % 2 == 0)
|
|
|
|
|
|
alignment_score = constructive_counts / total_shots
|
|
|
logger.info(f"Quantum alignment for {language}: {alignment_score:.4f}")
|
|
|
|
|
|
return alignment_score
|
|
|
|
|
|
def quantum_diversity_measurement(self, agent_params: Dict[str, Any],
|
|
|
language: str, num_samples: int = 10) -> float:
|
|
|
"""
|
|
|
Measure agent diversity using quantum state sampling.
|
|
|
|
|
|
Args:
|
|
|
agent_params: Agent parameters
|
|
|
language: Target language
|
|
|
num_samples: Number of quantum samples
|
|
|
|
|
|
Returns:
|
|
|
Diversity score (0-1)
|
|
|
"""
|
|
|
circuit = self.create_quantum_benchmark_circuit(agent_params, language, 'diversity')
|
|
|
|
|
|
|
|
|
samples = []
|
|
|
for _ in range(num_samples):
|
|
|
|
|
|
sample_circuit = circuit.copy()
|
|
|
for qubit in range(circuit.num_qubits):
|
|
|
random_angle = np.random.uniform(0, np.pi/4)
|
|
|
sample_circuit.ry(random_angle, qubit)
|
|
|
|
|
|
sample_circuit.measure_all()
|
|
|
|
|
|
job = self.simulator.run(sample_circuit, shots=100)
|
|
|
result = job.result()
|
|
|
counts = result.get_counts()
|
|
|
|
|
|
|
|
|
most_probable = max(counts.keys(), key=counts.get)
|
|
|
samples.append(most_probable)
|
|
|
|
|
|
|
|
|
unique_samples = len(set(samples))
|
|
|
diversity_score = unique_samples / num_samples
|
|
|
|
|
|
logger.info(f"Quantum diversity for {language}: {diversity_score:.4f}")
|
|
|
return diversity_score
|
|
|
|
|
|
def quantum_semantic_coverage(self, agent_params: Dict[str, Any],
|
|
|
language: str, semantic_space_dim: int = 16) -> float:
|
|
|
"""
|
|
|
Measure semantic coverage using quantum state space exploration.
|
|
|
|
|
|
Args:
|
|
|
agent_params: Agent parameters
|
|
|
language: Target language
|
|
|
semantic_space_dim: Dimension of semantic space
|
|
|
|
|
|
Returns:
|
|
|
Coverage score (0-1)
|
|
|
"""
|
|
|
circuit = self.create_quantum_benchmark_circuit(agent_params, language, 'coverage')
|
|
|
|
|
|
|
|
|
num_qubits = min(semantic_space_dim, self.max_qubits)
|
|
|
qreg = QuantumRegister(num_qubits, 'semantic_space')
|
|
|
explore_circuit = QuantumCircuit(qreg)
|
|
|
|
|
|
|
|
|
for i in range(num_qubits):
|
|
|
explore_circuit.h(qreg[i])
|
|
|
|
|
|
|
|
|
weights = agent_params.get('weights', [1.0])
|
|
|
for i, weight in enumerate(weights[:num_qubits]):
|
|
|
angle = weight * np.pi if abs(weight) <= 1 else np.pi
|
|
|
explore_circuit.ry(angle, qreg[i])
|
|
|
|
|
|
|
|
|
lang_phases = {
|
|
|
'indonesian': np.pi/6, 'arabic': np.pi/4, 'spanish': np.pi/3,
|
|
|
'english': np.pi/2, 'chinese': np.pi/5
|
|
|
}
|
|
|
phase = lang_phases.get(language, np.pi/4)
|
|
|
|
|
|
for i in range(num_qubits):
|
|
|
explore_circuit.rz(phase, qreg[i])
|
|
|
|
|
|
|
|
|
explore_circuit.measure_all()
|
|
|
|
|
|
job = self.simulator.run(explore_circuit, shots=2048)
|
|
|
result = job.result()
|
|
|
counts = result.get_counts()
|
|
|
|
|
|
|
|
|
total_shots = sum(counts.values())
|
|
|
probabilities = np.array([count/total_shots for count in counts.values()])
|
|
|
|
|
|
|
|
|
max_entropy = np.log2(len(counts))
|
|
|
entropy = -np.sum(probabilities * np.log2(probabilities + 1e-10))
|
|
|
coverage_score = entropy / max_entropy if max_entropy > 0 else 0.0
|
|
|
|
|
|
logger.info(f"Quantum semantic coverage for {language}: {coverage_score:.4f}")
|
|
|
return coverage_score
|
|
|
|
|
|
def parallel_quantum_evaluation(self, agent_params: Dict[str, Any],
|
|
|
reference_params: Dict[str, Any] = None) -> Dict[str, QuantumBenchmarkResult]:
|
|
|
"""
|
|
|
Perform parallel quantum evaluation across all languages.
|
|
|
|
|
|
Args:
|
|
|
agent_params: Agent parameters to evaluate
|
|
|
reference_params: Reference parameters for alignment
|
|
|
|
|
|
Returns:
|
|
|
Dictionary of benchmark results per language
|
|
|
"""
|
|
|
if reference_params is None:
|
|
|
|
|
|
reference_params = {'weights': [0.5] * len(agent_params.get('weights', [1.0]))}
|
|
|
|
|
|
results = {}
|
|
|
|
|
|
def evaluate_language(language: str) -> QuantumBenchmarkResult:
|
|
|
start_time = time.time()
|
|
|
|
|
|
|
|
|
alignment_loss = 1.0 - self.quantum_alignment_evaluation(agent_params, reference_params, language)
|
|
|
diversity_score = self.quantum_diversity_measurement(agent_params, language)
|
|
|
semantic_coverage = self.quantum_semantic_coverage(agent_params, language)
|
|
|
|
|
|
|
|
|
circuit = self.create_quantum_benchmark_circuit(agent_params, language, 'alignment')
|
|
|
job = self.simulator.run(circuit, shots=1024)
|
|
|
result = job.result()
|
|
|
counts = result.get_counts()
|
|
|
|
|
|
|
|
|
total_shots = sum(counts.values())
|
|
|
probabilities = np.array([count/total_shots for count in counts.values()])
|
|
|
coherence = 1.0 - (-np.sum(probabilities * np.log2(probabilities + 1e-10)) / np.log2(len(counts)))
|
|
|
|
|
|
|
|
|
entanglement = min(1.0, len([s for s in counts.keys() if s.count('1') > 1]) / len(counts))
|
|
|
|
|
|
|
|
|
overall_score = (
|
|
|
0.3 * (1.0 - alignment_loss) +
|
|
|
0.25 * diversity_score +
|
|
|
0.25 * semantic_coverage +
|
|
|
0.1 * coherence +
|
|
|
0.1 * entanglement
|
|
|
)
|
|
|
|
|
|
execution_time = time.time() - start_time
|
|
|
|
|
|
return QuantumBenchmarkResult(
|
|
|
agent_id=agent_params.get('id', 'unknown'),
|
|
|
language=language,
|
|
|
alignment_loss=alignment_loss,
|
|
|
diversity_score=diversity_score,
|
|
|
semantic_coverage=semantic_coverage,
|
|
|
quantum_coherence=coherence,
|
|
|
entanglement_measure=entanglement,
|
|
|
overall_score=overall_score,
|
|
|
measurement_counts=counts,
|
|
|
execution_time=execution_time
|
|
|
)
|
|
|
|
|
|
|
|
|
with ThreadPoolExecutor(max_workers=len(self.languages)) as executor:
|
|
|
future_to_lang = {executor.submit(evaluate_language, lang): lang for lang in self.languages}
|
|
|
|
|
|
for future in future_to_lang:
|
|
|
language = future_to_lang[future]
|
|
|
try:
|
|
|
result = future.result()
|
|
|
results[language] = result
|
|
|
except Exception as e:
|
|
|
logger.error(f"Evaluation failed for {language}: {e}")
|
|
|
|
|
|
results[language] = QuantumBenchmarkResult(
|
|
|
agent_id=agent_params.get('id', 'unknown'),
|
|
|
language=language,
|
|
|
alignment_loss=1.0,
|
|
|
diversity_score=0.0,
|
|
|
semantic_coverage=0.0,
|
|
|
quantum_coherence=0.0,
|
|
|
entanglement_measure=0.0,
|
|
|
overall_score=0.0,
|
|
|
measurement_counts={},
|
|
|
execution_time=0.0
|
|
|
)
|
|
|
|
|
|
|
|
|
self.evaluation_history.append({
|
|
|
'agent_params': agent_params,
|
|
|
'results': results,
|
|
|
'timestamp': time.time()
|
|
|
})
|
|
|
|
|
|
logger.info(f"Parallel quantum evaluation completed for {len(results)} languages")
|
|
|
return results
|
|
|
|
|
|
def update_quantum_leaderboard(self, agent_id: str, results: Dict[str, QuantumBenchmarkResult]):
|
|
|
"""
|
|
|
Update quantum-aware leaderboard with new results.
|
|
|
|
|
|
Args:
|
|
|
agent_id: Agent identifier
|
|
|
results: Benchmark results per language
|
|
|
"""
|
|
|
|
|
|
overall_scores = [result.overall_score for result in results.values()]
|
|
|
aggregate_score = np.mean(overall_scores)
|
|
|
|
|
|
|
|
|
coherence_scores = [result.quantum_coherence for result in results.values()]
|
|
|
entanglement_scores = [result.entanglement_measure for result in results.values()]
|
|
|
|
|
|
leaderboard_entry = {
|
|
|
'agent_id': agent_id,
|
|
|
'aggregate_score': aggregate_score,
|
|
|
'language_scores': {lang: result.overall_score for lang, result in results.items()},
|
|
|
'quantum_coherence': np.mean(coherence_scores),
|
|
|
'quantum_entanglement': np.mean(entanglement_scores),
|
|
|
'alignment_performance': np.mean([1.0 - result.alignment_loss for result in results.values()]),
|
|
|
'diversity_performance': np.mean([result.diversity_score for result in results.values()]),
|
|
|
'coverage_performance': np.mean([result.semantic_coverage for result in results.values()]),
|
|
|
'total_execution_time': sum(result.execution_time for result in results.values()),
|
|
|
'languages_evaluated': list(results.keys()),
|
|
|
'timestamp': time.time()
|
|
|
}
|
|
|
|
|
|
self.quantum_leaderboard[agent_id] = leaderboard_entry
|
|
|
logger.info(f"Updated quantum leaderboard for {agent_id}: score = {aggregate_score:.4f}")
|
|
|
|
|
|
def get_quantum_leaderboard(self, top_k: int = 10) -> List[Dict[str, Any]]:
|
|
|
"""
|
|
|
Get top-k entries from quantum leaderboard.
|
|
|
|
|
|
Args:
|
|
|
top_k: Number of top entries to return
|
|
|
|
|
|
Returns:
|
|
|
Sorted leaderboard entries
|
|
|
"""
|
|
|
sorted_entries = sorted(
|
|
|
self.quantum_leaderboard.values(),
|
|
|
key=lambda x: x['aggregate_score'],
|
|
|
reverse=True
|
|
|
)
|
|
|
|
|
|
return sorted_entries[:top_k]
|
|
|
|
|
|
def export_benchmark_results(self, filepath: str):
|
|
|
"""Export benchmark results to JSON file."""
|
|
|
export_data = {
|
|
|
'quantum_leaderboard': self.quantum_leaderboard,
|
|
|
'evaluation_history': [
|
|
|
{
|
|
|
'agent_params': entry['agent_params'],
|
|
|
'results': {
|
|
|
lang: {
|
|
|
'agent_id': result.agent_id,
|
|
|
'language': result.language,
|
|
|
'alignment_loss': result.alignment_loss,
|
|
|
'diversity_score': result.diversity_score,
|
|
|
'semantic_coverage': result.semantic_coverage,
|
|
|
'quantum_coherence': result.quantum_coherence,
|
|
|
'entanglement_measure': result.entanglement_measure,
|
|
|
'overall_score': result.overall_score,
|
|
|
'execution_time': result.execution_time
|
|
|
} for lang, result in entry['results'].items()
|
|
|
},
|
|
|
'timestamp': entry['timestamp']
|
|
|
} for entry in self.evaluation_history
|
|
|
],
|
|
|
'benchmark_config': {
|
|
|
'max_qubits': self.max_qubits,
|
|
|
'languages': self.languages,
|
|
|
'total_evaluations': len(self.evaluation_history)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
with open(filepath, 'w') as f:
|
|
|
json.dump(export_data, f, indent=2)
|
|
|
|
|
|
logger.info(f"Exported benchmark results to {filepath}")
|
|
|
|
|
|
def get_quantum_benchmark_metrics(self) -> Dict[str, Any]:
|
|
|
"""Get comprehensive metrics for quantum benchmarking."""
|
|
|
metrics = {
|
|
|
'max_qubits': self.max_qubits,
|
|
|
'languages_supported': len(self.languages),
|
|
|
'total_evaluations': len(self.evaluation_history),
|
|
|
'benchmark_circuits_created': len(self.benchmark_circuits),
|
|
|
'leaderboard_entries': len(self.quantum_leaderboard),
|
|
|
'quantum_speedup_factor': len(self.languages) ** 2,
|
|
|
}
|
|
|
|
|
|
if self.evaluation_history:
|
|
|
|
|
|
execution_times = []
|
|
|
overall_scores = []
|
|
|
|
|
|
for entry in self.evaluation_history:
|
|
|
for result in entry['results'].values():
|
|
|
execution_times.append(result.execution_time)
|
|
|
overall_scores.append(result.overall_score)
|
|
|
|
|
|
metrics.update({
|
|
|
'average_execution_time': np.mean(execution_times),
|
|
|
'average_overall_score': np.mean(overall_scores),
|
|
|
'score_variance': np.var(overall_scores),
|
|
|
'evaluation_efficiency': len(self.languages) / np.mean(execution_times) if execution_times else 0
|
|
|
})
|
|
|
|
|
|
return metrics |