File size: 18,578 Bytes
d0690fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
import pdb
import scipy
import numpy as np
scipy.inf = np.inf
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from dataset.custom_types import MsaInfo
from msaf.eval import compute_results
from postprocessing.functional import postprocess_functional_structure
from x_transformers import Encoder
import bisect
class Head(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dims=None, activation="silu"):
super().__init__()
hidden_dims = hidden_dims or []
act_layers = {"relu": nn.ReLU, "silu": nn.SiLU, "gelu": nn.GELU}
act_layer = act_layers.get(activation.lower())
if not act_layer:
raise ValueError(f"Unsupported activation: {activation}")
dims = [input_dim] + hidden_dims + [output_dim]
layers = []
for i in range(len(dims) - 1):
layers.append(nn.Linear(dims[i], dims[i + 1]))
if i < len(dims) - 2:
layers.append(act_layer())
self.net = nn.Sequential(*layers)
def reset_parameters(self, confidence):
bias_value = -torch.log(torch.tensor((1 - confidence) / confidence))
self.net[-1].bias.data.fill_(bias_value.item())
def forward(self, x):
batch, T, C = x.shape
x = x.reshape(-1, C)
x = self.net(x)
return x.reshape(batch, T, -1)
class WrapedTransformerEncoder(nn.Module):
def __init__(
self, input_dim, transformer_input_dim, num_layers=1, nhead=8, dropout=0.1
):
super().__init__()
self.input_dim = input_dim
self.transformer_input_dim = transformer_input_dim
if input_dim != transformer_input_dim:
self.input_proj = nn.Sequential(
nn.Linear(input_dim, transformer_input_dim),
nn.LayerNorm(transformer_input_dim),
nn.GELU(),
nn.Dropout(dropout * 0.5),
nn.Linear(transformer_input_dim, transformer_input_dim),
)
else:
self.input_proj = nn.Identity()
self.transformer = Encoder(
dim=transformer_input_dim,
depth=num_layers,
heads=nhead,
layer_dropout=dropout,
attn_dropout=dropout,
ff_dropout=dropout,
attn_flash=True,
rotary_pos_emb=True,
)
def forward(self, x, src_key_padding_mask=None):
"""
The input src_key_padding_mask is a B x T boolean mask, where True indicates masked positions.
However, in x-transformers, False indicates masked positions.
Therefore, it needs to be converted so that False represents masked positions.
"""
x = self.input_proj(x)
mask = (
~torch.tensor(src_key_padding_mask, dtype=torch.bool, device=x.device)
if src_key_padding_mask is not None
else None
)
return self.transformer(x, mask=mask)
def prefix_dict(d, prefix: str):
if prefix:
return d
return {prefix + key: value for key, value in d.items()}
class TimeDownsample(nn.Module):
def __init__(
self, dim_in, dim_out=None, kernel_size=5, stride=5, padding=0, dropout=0.1
):
super().__init__()
self.dim_out = dim_out or dim_in
assert self.dim_out % 2 == 0
self.depthwise_conv = nn.Conv1d(
in_channels=dim_in,
out_channels=dim_in,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=dim_in,
bias=False,
)
self.pointwise_conv = nn.Conv1d(
in_channels=dim_in,
out_channels=self.dim_out,
kernel_size=1,
bias=False,
)
self.pool = nn.AvgPool1d(kernel_size, stride, padding=padding)
self.norm1 = nn.LayerNorm(self.dim_out)
self.act1 = nn.GELU()
self.dropout1 = nn.Dropout(dropout)
if dim_in != self.dim_out:
self.residual_conv = nn.Conv1d(
dim_in, self.dim_out, kernel_size=1, bias=False
)
else:
self.residual_conv = None
def forward(self, x):
residual = x # [B, T, D_in]
# Convolutional module
x_c = x.transpose(1, 2) # [B, D_in, T]
x_c = self.depthwise_conv(x_c) # [B, D_in, T_down]
x_c = self.pointwise_conv(x_c) # [B, D_out, T_down]
# Residual module
res = self.pool(residual.transpose(1, 2)) # [B, D_in, T]
if self.residual_conv:
res = self.residual_conv(res) # [B, D_out, T_down]
x_c = x_c + res # [B, D_out, T_down]
x_c = x_c.transpose(1, 2) # [B, T_down, D_out]
x_c = self.norm1(x_c)
x_c = self.act1(x_c)
x_c = self.dropout1(x_c)
return x_c
class AddFuse(nn.Module):
def __init__(self):
super(AddFuse, self).__init__()
def forward(self, x, cond):
return x + cond
class TVLoss1D(nn.Module):
def __init__(
self, beta=1.0, lambda_tv=0.4, boundary_threshold=0.01, reduction_weight=0.1
):
"""
Args:
beta: Exponential parameter for TV loss (recommended 0.5~1.0)
lambda_tv: Overall weight for TV loss
boundary_threshold: Label threshold to determine if a region is a "boundary area" (e.g., 0.01)
reduction_weight: Scaling factor for TV penalty within boundary regions (e.g., 0.1, meaning only 10% penalty)
"""
super().__init__()
self.beta = beta
self.lambda_tv = lambda_tv
self.boundary_threshold = boundary_threshold
self.reduction_weight = reduction_weight
def forward(self, pred, target=None):
"""
Args:
pred: (B, T) or (B, T, 1), float boundary scores output by the model
target: (B, T) or (B, T, 1), ground truth labels (optional, used for spatial weighting if provided)
Returns:
scalar: weighted TV loss
"""
if pred.dim() == 3:
pred = pred.squeeze(-1)
if target is not None and target.dim() == 3:
target = target.squeeze(-1)
diff = pred[:, 1:] - pred[:, :-1]
tv_base = torch.pow(torch.abs(diff) + 1e-8, self.beta)
if target is None:
return self.lambda_tv * tv_base.mean()
left_in_boundary = target[:, :-1] > self.boundary_threshold
right_in_boundary = target[:, 1:] > self.boundary_threshold
near_boundary = left_in_boundary | right_in_boundary
weight_mask = torch.where(
near_boundary,
self.reduction_weight * torch.ones_like(tv_base),
torch.ones_like(tv_base),
)
tv_weighted = (tv_base * weight_mask).mean()
return self.lambda_tv * tv_weighted
class SoftmaxFocalLoss(nn.Module):
"""
Softmax Focal Loss for single-label multi-class classification.
Suitable for mutually exclusive classes.
"""
def __init__(self, alpha: float = 0.25, gamma: float = 2.0):
super().__init__()
self.alpha = alpha
self.gamma = gamma
def forward(self, pred: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
"""
Args:
pred: [B, T, C], raw logits
targets: [B, T, C] (soft) or [B, T] (hard, dtype=long)
Returns:
loss: scalar or [B, T] depending on reduction
"""
log_probs = F.log_softmax(pred, dim=-1)
probs = torch.exp(log_probs)
if targets.dtype == torch.long:
targets_onehot = F.one_hot(targets, num_classes=pred.size(-1)).float()
else:
targets_onehot = targets
p_t = (probs * targets_onehot).sum(dim=-1)
p_t = p_t.clamp(min=1e-8, max=1.0 - 1e-8)
if self.alpha > 0:
alpha_t = self.alpha * targets_onehot + (1 - self.alpha) * (
1 - targets_onehot
)
alpha_weight = (alpha_t * targets_onehot).sum(dim=-1)
else:
alpha_weight = 1.0
focal_weight = (1 - p_t) ** self.gamma
ce_loss = -log_probs * targets_onehot
ce_loss = ce_loss.sum(dim=-1)
loss = alpha_weight * focal_weight * ce_loss
return loss
class Model(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.input_norm = nn.LayerNorm(config.input_dim)
self.mixed_win_downsample = nn.Linear(config.input_dim_raw, config.input_dim)
self.dataset_class_prefix = nn.Embedding(
num_embeddings=config.num_dataset_classes,
embedding_dim=config.transformer_encoder_input_dim,
)
self.down_sample_conv = TimeDownsample(
dim_in=config.input_dim,
dim_out=config.transformer_encoder_input_dim,
kernel_size=config.down_sample_conv_kernel_size,
stride=config.down_sample_conv_stride,
dropout=config.down_sample_conv_dropout,
padding=config.down_sample_conv_padding,
)
self.AddFuse = AddFuse()
self.transformer = WrapedTransformerEncoder(
input_dim=config.transformer_encoder_input_dim,
transformer_input_dim=config.transformer_input_dim,
num_layers=config.num_transformer_layers,
nhead=config.transformer_nhead,
dropout=config.transformer_dropout,
)
self.boundary_TVLoss1D = TVLoss1D(
beta=config.boundary_tv_loss_beta,
lambda_tv=config.boundary_tv_loss_lambda,
boundary_threshold=config.boundary_tv_loss_boundary_threshold,
reduction_weight=config.boundary_tv_loss_reduction_weight,
)
self.label_focal_loss = SoftmaxFocalLoss(
alpha=config.label_focal_loss_alpha, gamma=config.label_focal_loss_gamma
)
self.boundary_head = Head(config.transformer_input_dim, 1)
self.function_head = Head(config.transformer_input_dim, config.num_classes)
def cal_metrics(self, gt_info: MsaInfo, msa_info: MsaInfo):
assert gt_info[-1][1] == "end" and msa_info[-1][1] == "end", (
"gt_info and msa_info should end with 'end'"
)
gt_info_labels = [label for time_, label in gt_info][:-1]
gt_info_inters = [time_ for time_, label in gt_info]
gt_info_inters = np.column_stack(
[np.array(gt_info_inters[:-1]), np.array(gt_info_inters[1:])]
)
msa_info_labels = [label for time_, label in msa_info][:-1]
msa_info_inters = [time_ for time_, label in msa_info]
msa_info_inters = np.column_stack(
[np.array(msa_info_inters[:-1]), np.array(msa_info_inters[1:])]
)
result = compute_results(
ann_inter=gt_info_inters,
est_inter=msa_info_inters,
ann_labels=gt_info_labels,
est_labels=msa_info_labels,
bins=11,
est_file="test.txt",
weight=0.58,
)
return result
def cal_acc(
self, ann_info: MsaInfo | str, est_info: MsaInfo | str, post_digit: int = 3
):
ann_info_time = [
int(round(time_, post_digit) * (10**post_digit))
for time_, label in ann_info
]
est_info_time = [
int(round(time_, post_digit) * (10**post_digit))
for time_, label in est_info
]
common_start_time = max(ann_info_time[0], est_info_time[0])
common_end_time = min(ann_info_time[-1], est_info_time[-1])
time_points = {common_start_time, common_end_time}
time_points.update(
{
time_
for time_ in ann_info_time
if common_start_time <= time_ <= common_end_time
}
)
time_points.update(
{
time_
for time_ in est_info_time
if common_start_time <= time_ <= common_end_time
}
)
time_points = sorted(time_points)
total_duration, total_score = 0, 0
for idx in range(len(time_points) - 1):
duration = time_points[idx + 1] - time_points[idx]
ann_label = ann_info[
bisect.bisect_right(ann_info_time, time_points[idx]) - 1
][1]
est_label = est_info[
bisect.bisect_right(est_info_time, time_points[idx]) - 1
][1]
total_duration += duration
if ann_label == est_label:
total_score += duration
return total_score / total_duration
def infer_with_metrics(self, batch, prefix: str = None):
with torch.no_grad():
logits = self.forward_func(batch)
losses = self.compute_losses(logits, batch, prefix=None)
expanded_mask = batch["label_id_masks"].expand(
-1, logits["function_logits"].size(1), -1
)
logits["function_logits"] = logits["function_logits"].masked_fill(
expanded_mask, -float("inf")
)
msa_info = postprocess_functional_structure(
logits=logits, config=self.config
)
gt_info = batch["msa_infos"][0]
results = self.cal_metrics(gt_info=gt_info, msa_info=msa_info)
ret_results = {
"loss": losses["loss"].item(),
"HitRate_3P": results["HitRate_3P"],
"HitRate_3R": results["HitRate_3R"],
"HitRate_3F": results["HitRate_3F"],
"HitRate_0.5P": results["HitRate_0.5P"],
"HitRate_0.5R": results["HitRate_0.5R"],
"HitRate_0.5F": results["HitRate_0.5F"],
"PWF": results["PWF"],
"PWP": results["PWP"],
"PWR": results["PWR"],
"Sf": results["Sf"],
"So": results["So"],
"Su": results["Su"],
"acc": self.cal_acc(ann_info=gt_info, est_info=msa_info),
}
if prefix:
ret_results = prefix_dict(ret_results, prefix)
return ret_results
def infer(
self,
input_embeddings,
dataset_ids,
label_id_masks,
prefix: str = None,
with_logits=False,
):
with torch.no_grad():
input_embeddings = self.mixed_win_downsample(input_embeddings)
input_embeddings = self.input_norm(input_embeddings)
logits = self.down_sample_conv(input_embeddings)
dataset_prefix = self.dataset_class_prefix(dataset_ids)
dataset_prefix_expand = dataset_prefix.unsqueeze(1).expand(
logits.size(0), 1, -1
)
logits = self.AddFuse(x=logits, cond=dataset_prefix_expand)
logits = self.transformer(x=logits, src_key_padding_mask=None)
function_logits = self.function_head(logits)
boundary_logits = self.boundary_head(logits).squeeze(-1)
logits = {
"function_logits": function_logits,
"boundary_logits": boundary_logits,
}
expanded_mask = label_id_masks.expand(
-1, logits["function_logits"].size(1), -1
)
logits["function_logits"] = logits["function_logits"].masked_fill(
expanded_mask, -float("inf")
)
msa_info = postprocess_functional_structure(
logits=logits, config=self.config
)
return (msa_info, logits) if with_logits else msa_info
def compute_losses(self, outputs, batch, prefix: str = None):
loss = 0.0
losses = {}
loss_section = F.binary_cross_entropy_with_logits(
outputs["boundary_logits"],
batch["widen_true_boundaries"],
reduction="none",
)
loss_section += self.config.boundary_tvloss_weight * self.boundary_TVLoss1D(
pred=outputs["boundary_logits"],
target=batch["widen_true_boundaries"],
)
loss_function = F.cross_entropy(
outputs["function_logits"].transpose(1, 2),
batch["true_functions"].transpose(1, 2),
reduction="none",
)
# input is [B, T, C]
ttt = self.config.label_focal_loss_weight * self.label_focal_loss(
pred=outputs["function_logits"], targets=batch["true_functions"]
)
loss_function += ttt
float_masks = (~batch["masks"]).float()
boundary_mask = batch.get("boundary_mask", None)
function_mask = batch.get("function_mask", None)
if boundary_mask is not None:
boundary_mask = (~boundary_mask).float()
else:
boundary_mask = 1
if function_mask is not None:
function_mask = (~function_mask).float()
else:
function_mask = 1
loss_section = torch.mean(boundary_mask * float_masks * loss_section)
loss_function = torch.mean(function_mask * float_masks * loss_function)
loss_section *= self.config.loss_weight_section
loss_function *= self.config.loss_weight_function
if self.config.learn_label:
loss += loss_function
if self.config.learn_segment:
loss += loss_section
losses.update(
loss=loss,
loss_section=loss_section,
loss_function=loss_function,
)
if prefix:
losses = prefix_dict(losses, prefix)
return losses
def forward_func(self, batch):
input_embeddings = batch["input_embeddings"]
input_embeddings = self.mixed_win_downsample(input_embeddings)
input_embeddings = self.input_norm(input_embeddings)
logits = self.down_sample_conv(input_embeddings)
dataset_prefix = self.dataset_class_prefix(batch["dataset_ids"])
logits = self.AddFuse(x=logits, cond=dataset_prefix.unsqueeze(1))
src_key_padding_mask = batch["masks"]
logits = self.transformer(x=logits, src_key_padding_mask=src_key_padding_mask)
function_logits = self.function_head(logits)
boundary_logits = self.boundary_head(logits).squeeze(-1)
logits = {
"function_logits": function_logits,
"boundary_logits": boundary_logits,
}
return logits
def forward(self, batch):
logits = self.forward_func(batch)
losses = self.compute_losses(logits, batch, prefix=None)
return logits, losses["loss"], losses
|