--- library_name: peft base_model: microsoft/codebert-base tags: - generated_from_trainer datasets: - code_search_net model-index: - name: codebert-model results: [] --- # codebert-model This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the code_search_net dataset. It achieves the following results on the evaluation set: - eval_loss: 0.8346 - eval_model_preparation_time: 0.0057 - eval_accuracy: {'accuracy': 0.21967491508976225} - eval_f1: {'f1': 0.0} - eval_runtime: 9384.6382 - eval_samples_per_second: 0.878 - eval_steps_per_second: 0.11 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1