Create location_encoder.py
Browse files- location_encoder.py +158 -0
location_encoder.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from torch import nn
|
| 8 |
+
from torch.nn import functional as F
|
| 9 |
+
|
| 10 |
+
from .positional_encoding import SphericalHarmonics
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class LocationEncoder(nn.Module):
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
dim_hidden: int,
|
| 17 |
+
num_layers: int,
|
| 18 |
+
dim_out: int,
|
| 19 |
+
legendre_polys: int = 10,
|
| 20 |
+
):
|
| 21 |
+
super().__init__()
|
| 22 |
+
self.posenc = SphericalHarmonics(legendre_polys=legendre_polys)
|
| 23 |
+
self.nnet = SirenNet(
|
| 24 |
+
dim_in=self.posenc.embedding_dim,
|
| 25 |
+
dim_hidden=dim_hidden,
|
| 26 |
+
num_layers=num_layers,
|
| 27 |
+
dim_out=dim_out,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
def forward(self, x):
|
| 31 |
+
x = self.posenc(x)
|
| 32 |
+
return self.nnet(x)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class SirenNet(nn.Module):
|
| 36 |
+
"""Sinusoidal Representation Network (SIREN)"""
|
| 37 |
+
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
dim_in,
|
| 41 |
+
dim_hidden,
|
| 42 |
+
dim_out,
|
| 43 |
+
num_layers,
|
| 44 |
+
w0=1.0,
|
| 45 |
+
w0_initial=30.0,
|
| 46 |
+
use_bias=True,
|
| 47 |
+
final_activation=None,
|
| 48 |
+
degreeinput=False,
|
| 49 |
+
dropout=True,
|
| 50 |
+
):
|
| 51 |
+
super().__init__()
|
| 52 |
+
self.num_layers = num_layers
|
| 53 |
+
self.dim_hidden = dim_hidden
|
| 54 |
+
self.degreeinput = degreeinput
|
| 55 |
+
|
| 56 |
+
self.layers = nn.ModuleList([])
|
| 57 |
+
for ind in range(num_layers):
|
| 58 |
+
is_first = ind == 0
|
| 59 |
+
layer_w0 = w0_initial if is_first else w0
|
| 60 |
+
layer_dim_in = dim_in if is_first else dim_hidden
|
| 61 |
+
|
| 62 |
+
self.layers.append(
|
| 63 |
+
Siren(
|
| 64 |
+
dim_in=layer_dim_in,
|
| 65 |
+
dim_out=dim_hidden,
|
| 66 |
+
w0=layer_w0,
|
| 67 |
+
use_bias=use_bias,
|
| 68 |
+
is_first=is_first,
|
| 69 |
+
dropout=dropout,
|
| 70 |
+
)
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
final_activation = (
|
| 74 |
+
nn.Identity() if not exists(final_activation) else final_activation
|
| 75 |
+
)
|
| 76 |
+
self.last_layer = Siren(
|
| 77 |
+
dim_in=dim_hidden,
|
| 78 |
+
dim_out=dim_out,
|
| 79 |
+
w0=w0,
|
| 80 |
+
use_bias=use_bias,
|
| 81 |
+
activation=final_activation,
|
| 82 |
+
dropout=False,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
def forward(self, x, mods=None):
|
| 86 |
+
# do some normalization to bring degrees in a -pi to pi range
|
| 87 |
+
if self.degreeinput:
|
| 88 |
+
x = torch.deg2rad(x) - torch.pi
|
| 89 |
+
|
| 90 |
+
mods = cast_tuple(mods, self.num_layers)
|
| 91 |
+
|
| 92 |
+
for layer, mod in zip(self.layers, mods):
|
| 93 |
+
x = layer(x)
|
| 94 |
+
|
| 95 |
+
if exists(mod):
|
| 96 |
+
x *= rearrange(mod, "d -> () d")
|
| 97 |
+
|
| 98 |
+
return self.last_layer(x)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class Sine(nn.Module):
|
| 102 |
+
def __init__(self, w0=1.0):
|
| 103 |
+
super().__init__()
|
| 104 |
+
self.w0 = w0
|
| 105 |
+
|
| 106 |
+
def forward(self, x):
|
| 107 |
+
return torch.sin(self.w0 * x)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class Siren(nn.Module):
|
| 111 |
+
def __init__(
|
| 112 |
+
self,
|
| 113 |
+
dim_in,
|
| 114 |
+
dim_out,
|
| 115 |
+
w0=1.0,
|
| 116 |
+
c=6.0,
|
| 117 |
+
is_first=False,
|
| 118 |
+
use_bias=True,
|
| 119 |
+
activation=None,
|
| 120 |
+
dropout=False,
|
| 121 |
+
):
|
| 122 |
+
super().__init__()
|
| 123 |
+
self.dim_in = dim_in
|
| 124 |
+
self.is_first = is_first
|
| 125 |
+
self.dim_out = dim_out
|
| 126 |
+
self.dropout = dropout
|
| 127 |
+
|
| 128 |
+
weight = torch.zeros(dim_out, dim_in)
|
| 129 |
+
bias = torch.zeros(dim_out) if use_bias else None
|
| 130 |
+
self.init_(weight, bias, c=c, w0=w0)
|
| 131 |
+
|
| 132 |
+
self.weight = nn.Parameter(weight)
|
| 133 |
+
self.bias = nn.Parameter(bias) if use_bias else None
|
| 134 |
+
self.activation = Sine(w0) if activation is None else activation
|
| 135 |
+
|
| 136 |
+
def init_(self, weight, bias, c, w0):
|
| 137 |
+
dim = self.dim_in
|
| 138 |
+
|
| 139 |
+
w_std = (1 / dim) if self.is_first else (math.sqrt(c / dim) / w0)
|
| 140 |
+
weight.uniform_(-w_std, w_std)
|
| 141 |
+
|
| 142 |
+
if exists(bias):
|
| 143 |
+
bias.uniform_(-w_std, w_std)
|
| 144 |
+
|
| 145 |
+
def forward(self, x):
|
| 146 |
+
out = F.linear(x, self.weight, self.bias)
|
| 147 |
+
if self.dropout:
|
| 148 |
+
out = F.dropout(out, training=self.training)
|
| 149 |
+
out = self.activation(out)
|
| 150 |
+
return out
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def exists(val):
|
| 154 |
+
return val is not None
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def cast_tuple(val, repeat=1):
|
| 158 |
+
return val if isinstance(val, tuple) else ((val,) * repeat)
|