--- tags: - lora - transformers base_model: local-synthetic-gpt2 license: mit task: text-generation --- # SQL OCR LoRA (synthetic, CPU-friendly) This repository hosts a tiny GPT-2–style LoRA adapter trained on a synthetic SQL Q&A corpus that mimics table-structure reasoning prompts. The model and tokenizer are initialized from scratch to avoid external downloads and keep the pipeline CPU-friendly. ## Model Details - **Architecture:** GPT-2 style causal LM (2 layers, 4 heads, 128 hidden size) - **Tokenizer:** Word-level tokenizer trained on the synthetic prompts/answers with special tokens `[BOS]`, `[EOS]`, `[PAD]`, `[UNK]` - **Task:** Text generation / instruction following for SQL-style outputs - **Base model:** `local-synthetic-gpt2` (initialized from scratch) ## Training - **Data:** 64 synthetic Spider-inspired text pairs combining schema prompts with target SQL answers (no real images) - **Batch size:** 2 (gradient accumulation 1) - **Max steps:** 30 - **Precision:** fp32 on CPU - **Regularization:** LoRA rank 8, alpha 16 on `c_attn` modules ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("JohnnyZeppelin/sql-ocr") tokenizer = AutoTokenizer.from_pretrained("JohnnyZeppelin/sql-ocr") text = "<|system|>Given the database schema displayed above for database 'sales_0', analyze relations...<|end|><|user|>" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Limitations & Notes - This is a demonstration LoRA trained on synthetic text-only data; it is **not** a production OCR or SQL model. - The tokenizer and model are tiny and intended for quick CPU experiments only. - Because training is fully synthetic, outputs will be illustrative rather than accurate for real schemas.