Update README.md
Browse files
README.md
CHANGED
|
@@ -1,31 +1,18 @@
|
|
| 1 |
---
|
| 2 |
|
| 3 |
datasets:
|
| 4 |
-
|
| 5 |
- lerobot/pusht
|
| 6 |
-
|
| 7 |
library_name: lerobot
|
| 8 |
-
|
| 9 |
license: apache-2.0
|
| 10 |
-
|
| 11 |
model_name: diffusion
|
| 12 |
-
|
| 13 |
pipeline_tag: robotics
|
| 14 |
-
|
| 15 |
tags:
|
| 16 |
-
|
| 17 |
- lerobot
|
| 18 |
-
|
| 19 |
- robotics
|
| 20 |
-
|
| 21 |
- diffusion
|
| 22 |
-
|
| 23 |
- pusht
|
| 24 |
-
|
| 25 |
- imitation-learning
|
| 26 |
-
|
| 27 |
- benchmark
|
| 28 |
-
|
| 29 |
---
|
| 30 |
|
| 31 |
|
|
@@ -45,189 +32,96 @@ tags:
|
|
| 45 |
|
| 46 |
|
| 47 |
> **Summary:** This model demonstrates the capabilities of **Diffusion Policy** on the precision-demanding **Push-T** task. It was trained using the [LeRobot](https://github.com/huggingface/lerobot) framework as part of a thesis research project benchmarking Imitation Learning algorithms.
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
- **π§© Task**: Push-T (Simulated)
|
| 52 |
-
|
| 53 |
- **π§ Algorithm**: [Diffusion Policy](https://huggingface.co/papers/2303.04137) (DDPM)
|
| 54 |
-
|
| 55 |
- **π Training Steps**: 200,000 (Fine-tuned via Resume)
|
| 56 |
-
|
| 57 |
- **π Author**: Graduate Student, **UESTC** (University of Electronic Science and Technology of China)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
---
|
| 62 |
|
| 63 |
|
| 64 |
|
| 65 |
## π¬ Benchmark Results (vs ACT)
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
Compared to the ACT baseline (which achieved **0%** success rate in our controlled experiments), this Diffusion Policy model demonstrates significantly better control precision and trajectory stability.
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
### π Evaluation Metrics (50 Episodes)
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
| Metric | Value | Comparison to ACT Baseline | Status |
|
| 78 |
-
|
| 79 |
| :--- | :---: | :--- | :---: |
|
| 80 |
-
|
| 81 |
| **Success Rate** | **14.0%** | **Significant Improvement** (ACT: 0%) | π |
|
| 82 |
-
|
| 83 |
| **Avg Max Reward** | **0.81** | **+58% Higher Precision** (ACT: ~0.51) | π |
|
| 84 |
-
|
| 85 |
| **Avg Sum Reward** | **130.46** | **+147% More Stable** (ACT: ~52.7) | β
|
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
> **Note:** The Push-T environment requires **>95% target coverage** for success. An average max reward of `0.81` indicates the policy consistently moves the block very close to the target position, proving strong manipulation capabilities despite the strict success threshold.
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
---
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
## βοΈ Model Details
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
| Parameter | Description |
|
| 102 |
-
|
| 103 |
| :--- | :--- |
|
| 104 |
-
|
| 105 |
| **Architecture** | ResNet18 (Vision Backbone) + U-Net (Diffusion Head) |
|
| 106 |
-
|
| 107 |
| **Prediction Horizon** | 16 steps |
|
| 108 |
-
|
| 109 |
| **Observation History** | 2 steps |
|
| 110 |
-
|
| 111 |
| **Action Steps** | 8 steps |
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
- **Training Strategy**:
|
| 116 |
-
|
| 117 |
- Phase 1: Initial training (100,000 steps) -> Model: `Lemon-03/DP_PushT_test`
|
| 118 |
-
|
| 119 |
- Phase 2: Resume/Fine-tuning (+100,000 steps) -> Model: `Lemon-03/DP_PushT_test_Resume`
|
| 120 |
-
|
| 121 |
- **Total**: 200,000 steps
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
---
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
## π§ Training Configuration (Reference)
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
For reproducibility, here are the key parameters used during the training session:
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
- **Batch Size**: 64
|
| 138 |
-
|
| 139 |
- **Optimizer**: AdamW (`lr=1e-4`)
|
| 140 |
-
|
| 141 |
- **Scheduler**: Cosine with warmup
|
| 142 |
-
|
| 143 |
- **Vision**: ResNet18 with random crop (84x84)
|
| 144 |
-
|
| 145 |
- **Precision**: Mixed Precision (AMP) enabled
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
#### Original Training Command (My Resume Mode)
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
```bash
|
| 154 |
-
|
| 155 |
python -m lerobot.scripts.lerobot_train \
|
| 156 |
-
|
| 157 |
--policy.type diffusion \
|
| 158 |
-
|
| 159 |
--env.type pusht \
|
| 160 |
-
|
| 161 |
--dataset.repo_id lerobot/pusht \
|
| 162 |
-
|
| 163 |
--wandb.enable true \
|
| 164 |
-
|
| 165 |
--eval.batch_size 8 \
|
| 166 |
-
|
| 167 |
--job_name DP_PushT_Resume \
|
| 168 |
-
|
| 169 |
--policy.repo_id Lemon-03/DP_PushT_test_Resume \
|
| 170 |
-
|
| 171 |
--policy.pretrained_path outputs/train/2025-12-02/14-33-35_DP_PushT/checkpoints/last/pretrained_model \
|
| 172 |
-
|
| 173 |
--steps 100000
|
| 174 |
-
|
| 175 |
```
|
| 176 |
|
| 177 |
---
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
## π Evaluate (My Evaluation Mode)
|
| 182 |
|
| 183 |
-
|
| 184 |
-
|
| 185 |
Run the following command in your terminal to evaluate the model for 50 episodes and save the visualization videos:
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
```bash
|
| 190 |
-
|
| 191 |
python -m lerobot.scripts.lerobot_eval \
|
| 192 |
-
|
| 193 |
--policy.type diffusion \
|
| 194 |
-
|
| 195 |
--policy.pretrained_path outputs/train/2025-12-04/14-47-37_DP_PushT_Resume/checkpoints/last/pretrained_model \
|
| 196 |
-
|
| 197 |
--eval.n_episodes 50 \
|
| 198 |
-
|
| 199 |
--eval.batch_size 10 \
|
| 200 |
-
|
| 201 |
--env.type pusht \
|
| 202 |
-
|
| 203 |
--env.task PushT-v0
|
| 204 |
-
|
| 205 |
```
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
To evaluate this model locally, run the following command:
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
```bash
|
| 214 |
-
|
| 215 |
python -m lerobot.scripts.lerobot_eval \
|
| 216 |
-
|
| 217 |
--policy.type diffusion \
|
| 218 |
-
|
| 219 |
--policy.pretrained_path Lemon-03/DP_PushT_test_Resume \
|
| 220 |
-
|
| 221 |
--eval.n_episodes 50 \
|
| 222 |
-
|
| 223 |
--eval.batch_size 10 \
|
| 224 |
-
|
| 225 |
--env.type pusht \
|
| 226 |
-
|
| 227 |
--env.task PushT-v0
|
| 228 |
-
|
| 229 |
```
|
| 230 |
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-----
|
|
|
|
| 1 |
---
|
| 2 |
|
| 3 |
datasets:
|
|
|
|
| 4 |
- lerobot/pusht
|
|
|
|
| 5 |
library_name: lerobot
|
|
|
|
| 6 |
license: apache-2.0
|
|
|
|
| 7 |
model_name: diffusion
|
|
|
|
| 8 |
pipeline_tag: robotics
|
|
|
|
| 9 |
tags:
|
|
|
|
| 10 |
- lerobot
|
|
|
|
| 11 |
- robotics
|
|
|
|
| 12 |
- diffusion
|
|
|
|
| 13 |
- pusht
|
|
|
|
| 14 |
- imitation-learning
|
|
|
|
| 15 |
- benchmark
|
|
|
|
| 16 |
---
|
| 17 |
|
| 18 |
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
> **Summary:** This model demonstrates the capabilities of **Diffusion Policy** on the precision-demanding **Push-T** task. It was trained using the [LeRobot](https://github.com/huggingface/lerobot) framework as part of a thesis research project benchmarking Imitation Learning algorithms.
|
|
|
|
|
|
|
|
|
|
| 35 |
- **π§© Task**: Push-T (Simulated)
|
|
|
|
| 36 |
- **π§ Algorithm**: [Diffusion Policy](https://huggingface.co/papers/2303.04137) (DDPM)
|
|
|
|
| 37 |
- **π Training Steps**: 200,000 (Fine-tuned via Resume)
|
|
|
|
| 38 |
- **π Author**: Graduate Student, **UESTC** (University of Electronic Science and Technology of China)
|
|
|
|
|
|
|
|
|
|
| 39 |
---
|
| 40 |
|
| 41 |
|
| 42 |
|
| 43 |
## π¬ Benchmark Results (vs ACT)
|
| 44 |
|
|
|
|
|
|
|
| 45 |
Compared to the ACT baseline (which achieved **0%** success rate in our controlled experiments), this Diffusion Policy model demonstrates significantly better control precision and trajectory stability.
|
| 46 |
|
|
|
|
|
|
|
| 47 |
### π Evaluation Metrics (50 Episodes)
|
| 48 |
|
|
|
|
|
|
|
| 49 |
| Metric | Value | Comparison to ACT Baseline | Status |
|
|
|
|
| 50 |
| :--- | :---: | :--- | :---: |
|
|
|
|
| 51 |
| **Success Rate** | **14.0%** | **Significant Improvement** (ACT: 0%) | π |
|
|
|
|
| 52 |
| **Avg Max Reward** | **0.81** | **+58% Higher Precision** (ACT: ~0.51) | π |
|
|
|
|
| 53 |
| **Avg Sum Reward** | **130.46** | **+147% More Stable** (ACT: ~52.7) | β
|
|
| 54 |
|
|
|
|
|
|
|
| 55 |
> **Note:** The Push-T environment requires **>95% target coverage** for success. An average max reward of `0.81` indicates the policy consistently moves the block very close to the target position, proving strong manipulation capabilities despite the strict success threshold.
|
| 56 |
+
|
|
|
|
|
|
|
| 57 |
---
|
| 58 |
|
|
|
|
|
|
|
| 59 |
## βοΈ Model Details
|
| 60 |
|
|
|
|
|
|
|
| 61 |
| Parameter | Description |
|
|
|
|
| 62 |
| :--- | :--- |
|
|
|
|
| 63 |
| **Architecture** | ResNet18 (Vision Backbone) + U-Net (Diffusion Head) |
|
|
|
|
| 64 |
| **Prediction Horizon** | 16 steps |
|
|
|
|
| 65 |
| **Observation History** | 2 steps |
|
|
|
|
| 66 |
| **Action Steps** | 8 steps |
|
| 67 |
|
|
|
|
|
|
|
| 68 |
- **Training Strategy**:
|
|
|
|
| 69 |
- Phase 1: Initial training (100,000 steps) -> Model: `Lemon-03/DP_PushT_test`
|
|
|
|
| 70 |
- Phase 2: Resume/Fine-tuning (+100,000 steps) -> Model: `Lemon-03/DP_PushT_test_Resume`
|
|
|
|
| 71 |
- **Total**: 200,000 steps
|
|
|
|
|
|
|
|
|
|
| 72 |
---
|
| 73 |
|
|
|
|
|
|
|
| 74 |
## π§ Training Configuration (Reference)
|
| 75 |
|
|
|
|
|
|
|
| 76 |
For reproducibility, here are the key parameters used during the training session:
|
| 77 |
|
|
|
|
|
|
|
| 78 |
- **Batch Size**: 64
|
|
|
|
| 79 |
- **Optimizer**: AdamW (`lr=1e-4`)
|
|
|
|
| 80 |
- **Scheduler**: Cosine with warmup
|
|
|
|
| 81 |
- **Vision**: ResNet18 with random crop (84x84)
|
|
|
|
| 82 |
- **Precision**: Mixed Precision (AMP) enabled
|
| 83 |
|
|
|
|
|
|
|
| 84 |
#### Original Training Command (My Resume Mode)
|
| 85 |
|
|
|
|
|
|
|
| 86 |
```bash
|
|
|
|
| 87 |
python -m lerobot.scripts.lerobot_train \
|
|
|
|
| 88 |
--policy.type diffusion \
|
|
|
|
| 89 |
--env.type pusht \
|
|
|
|
| 90 |
--dataset.repo_id lerobot/pusht \
|
|
|
|
| 91 |
--wandb.enable true \
|
|
|
|
| 92 |
--eval.batch_size 8 \
|
|
|
|
| 93 |
--job_name DP_PushT_Resume \
|
|
|
|
| 94 |
--policy.repo_id Lemon-03/DP_PushT_test_Resume \
|
|
|
|
| 95 |
--policy.pretrained_path outputs/train/2025-12-02/14-33-35_DP_PushT/checkpoints/last/pretrained_model \
|
|
|
|
| 96 |
--steps 100000
|
|
|
|
| 97 |
```
|
| 98 |
|
| 99 |
---
|
| 100 |
|
|
|
|
|
|
|
| 101 |
## π Evaluate (My Evaluation Mode)
|
| 102 |
|
|
|
|
|
|
|
| 103 |
Run the following command in your terminal to evaluate the model for 50 episodes and save the visualization videos:
|
| 104 |
|
|
|
|
|
|
|
| 105 |
```bash
|
|
|
|
| 106 |
python -m lerobot.scripts.lerobot_eval \
|
|
|
|
| 107 |
--policy.type diffusion \
|
|
|
|
| 108 |
--policy.pretrained_path outputs/train/2025-12-04/14-47-37_DP_PushT_Resume/checkpoints/last/pretrained_model \
|
|
|
|
| 109 |
--eval.n_episodes 50 \
|
|
|
|
| 110 |
--eval.batch_size 10 \
|
|
|
|
| 111 |
--env.type pusht \
|
|
|
|
| 112 |
--env.task PushT-v0
|
|
|
|
| 113 |
```
|
| 114 |
|
|
|
|
|
|
|
| 115 |
To evaluate this model locally, run the following command:
|
| 116 |
|
|
|
|
|
|
|
| 117 |
```bash
|
|
|
|
| 118 |
python -m lerobot.scripts.lerobot_eval \
|
|
|
|
| 119 |
--policy.type diffusion \
|
|
|
|
| 120 |
--policy.pretrained_path Lemon-03/DP_PushT_test_Resume \
|
|
|
|
| 121 |
--eval.n_episodes 50 \
|
|
|
|
| 122 |
--eval.batch_size 10 \
|
|
|
|
| 123 |
--env.type pusht \
|
|
|
|
| 124 |
--env.task PushT-v0
|
|
|
|
| 125 |
```
|
| 126 |
|
|
|
|
|
|
|
| 127 |
-----
|