File size: 17,277 Bytes
c299f11
 
 
5893407
 
 
 
 
c299f11
5893407
fc88871
 
 
 
 
5893407
fc88871
0a97e45
fc88871
c4d0c2e
fc88871
 
 
 
 
 
 
 
 
d50d33e
fc88871
 
 
 
 
 
 
 
 
 
 
 
5893407
3eefc8a
fc88871
 
 
 
 
 
 
 
b7b88d9
 
fc88871
 
 
 
 
 
3eefc8a
fc88871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b88d9
 
 
fc88871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b88d9
 
3eefc8a
 
b7b88d9
 
 
fc88871
b7b88d9
fc88871
 
 
b7b88d9
 
 
 
 
 
 
fc88871
b7b88d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc88871
 
 
b7b88d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc88871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3eefc8a
fc88871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5893407
 
fc88871
 
 
 
 
 
 
 
8787691
 
 
 
 
 
 
 
fc88871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5893407
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
---
base_model:
- Qwen/Qwen2.5-7B-Instruct
language:
- en
license: apache-2.0
pipeline_tag: image-text-to-text
library_name: hpsv3
---

<div align="center">

# 🎯 HPSv3: Towards Wide-Spectrum Human Preference Score (ICCV 2025)

[![Project Website](https://img.shields.io/badge/🌐-Project%20Website-deepgray)](https://mizzenai.github.io/HPSv3.project/)
[![arXiv](https://img.shields.io/badge/arXiv-2508.03789-b31b1b.svg)](https://arxiv.org/abs/2508.03789)
[![ICCV 2025](https://img.shields.io/badge/ICCV-2025-blue.svg)]()
[![Code](https://img.shields.io/badge/Code-black?logo=github)](https://github.com/MizzenAI/HPSv3)
[![Model](https://img.shields.io/badge/πŸ€—-Model-yellow)](https://huggingface.co/MizzenAI/HPSv3)
[![Dataset](https://img.shields.io/badge/πŸ€—-Dataset-green)](https://huggingface.co/datasets/MizzenAI/HPDv3)


<!-- **Yuhang Ma**<sup>1,2*</sup>&ensp; **Yunhao Shui**<sup>1,3*</sup>&ensp;  **Xiaoshi Wu**<sup>4</sup>&ensp; **Keqiang Sun**<sup>1,4†</sup>&ensp; **Hongsheng Li**<sup>4,5,6†</sup>

<sup>1</sup>Mizzen AI&ensp;&ensp; <sup>2</sup>King’s College London&ensp;&ensp; <sup>3</sup>Shanghai Jiaotong University&ensp;&ensp; <sup>4</sup>CUHK MMLab&ensp;&ensp; <sup>5</sup>Shanghai AI Laboratory&ensp;&ensp; <sup>6</sup>CPII, InnoHK&ensp;&ensp; 

<sup>*</sup>Equal Contribution&ensp;&ensp; <sup>†</sup>Equal Advising -->


**Yuhang Ma**<sup>1,3*</sup>&ensp; **Yunhao Shui**<sup>1,4*</sup>&ensp; **Xiaoshi Wu**<sup>2</sup>&ensp; **Keqiang Sun**<sup>1,2†</sup>&ensp; **Hongsheng Li**<sup>2,5,6†</sup>

<sup>1</sup>Mizzen AI&ensp;&ensp; <sup>2</sup>CUHK MMLab&ensp;&ensp; <sup>3</sup>King’s College London&ensp;&ensp; <sup>4</sup>Shanghai Jiaotong University&ensp;&ensp; 

<sup>5</sup>Shanghai AI Laboratory&ensp;&ensp; <sup>6</sup>CPII, InnoHK&ensp;&ensp; 

<sup>*</sup>Equal Contribution&ensp; <sup>†</sup>Equal Advising

</div>


## πŸ“– Introduction

This is the official implementation for the paper: [HPSv3: Towards Wide-Spectrum Human Preference Score](https://huggingface.co/papers/2508.03789).
First, we introduce a VLM-based preference model **HPSv3**, trained on a "wide spectrum" preference dataset **HPDv3** with 1.08M text-image pairs and 1.17M annotated pairwise comparisons, covering both state-of-the-art and earlier generative models, as well as high- and low-quality real-world images. Second, we propose a novel reasoning approach for iterative image refinement, **CoHP(Chain-of-Human-Preference)**, which efficiently improves image quality without requiring additional training data.

<p align="center">
  <img src="assets/teaser.png" alt="Teaser" width="900"/>
</p>


## ✨ Updates

- **[2025-08-08]** πŸŽ‰ We release [HPDv3](https://huggingface.co/datasets/MizzenAI/HPDv3) dataset!.
- **[2025-08-06]** πŸŽ‰ We release HPSv3: inference code, training code, cohp code and [HPSv3 model weights](https://huggingface.co/MizzenAI/HPSv3). And [PyPI Package](https://pypi.org/project/hpsv3/).

## πŸ“‘ Table of Contents
1. [πŸš€ Quick Start](#πŸš€-quick-start)
2. [🌐 Gradio Demo](#🌐-gradio-demo)
3. [πŸ‹οΈ Training](#πŸ‹οΈ-training)
4. [πŸ“Š Benchmark](#πŸ“Š-benchmark)
5. [🎯 CoHP (Chain-of-Human-Preference)](#🎯-cohp-chain-of-human-preference)

---

## πŸš€ Quick Start

HPSv3 is a state-of-the-art human preference score model for evaluating image quality and prompt alignment. It builds upon the Qwen2-VL architecture to provide accurate assessments of generated images.

### πŸ’» Installation

<!-- # Method 1: Pypi download and install for inference.
pip install hpsv3 -->

```bash

# Install locally for development or training.
git clone https://github.com/MizzenAI/HPSv3.git
cd HPSv3

conda env create -f environment.yaml
conda activate hpsv3
# Recommend: Install flash-attn
pip install flash-attn==2.7.4.post1

pip install -e .
```

### πŸ› οΈ Basic Usage

#### Simple Inference Example

```python
from hpsv3 import HPSv3RewardInferencer

# Initialize the model
inferencer = HPSv3RewardInferencer(device='cuda')

# Evaluate images
image_paths = ["assets/example1.png", "assets/example2.png"]
prompts = [
  "cute chibi anime cartoon fox, smiling wagging tail with a small cartoon heart above sticker",
  "cute chibi anime cartoon fox, smiling wagging tail with a small cartoon heart above sticker"
]

# Get preference scores
rewards = inferencer.reward(image_paths, prompts)
scores = [reward[0].item() for reward in rewards]  # Extract mu values
print(f"Image scores: {scores}")
```

---

## 🌐 Gradio Demo

Launch an interactive web interface to test HPSv3:

```bash
python gradio_demo/demo.py
```

The demo will be available at `http://localhost:7860` and provides:

<p align="center">
  <img src="assets/gradio.png" alt="Gradio Demo" width="500"/>
</p>



## πŸ“ Dataset

### Human Preference Dataset v3

Human Preference Dataset v3 (HPD v3) comprises 1.08M text-image pairs and 1.17M annotated pairwise data. To modeling the wide spectrum of human preference, we introduce newest state-of-the-art generative models and high quality real photographs while maintaining old models and lower quality real images.

<details close>
<summary>Detail information of HPD v3</summary>

| Image Source | Type | Num Image | Prompt Source | Split |
|--------------|------|-----------|---------------|-------|
| High Quality Image (HQI) | Real Image | 57759 | VLM Caption | Train & Test |
| MidJourney | - | 331955 | User | Train |
| CogView4 | DiT | 400 | HQI+HPDv2+JourneyDB | Test |
| FLUX.1 dev | DiT | 48927 | HQI+HPDv2+JourneyDB | Train & Test |
| Infinity | Autoregressive | 27061 | HQI+HPDv2+JourneyDB | Train & Test |
| Kolors | DiT | 49705 | HQI+HPDv2+JourneyDB | Train & Test |
| HunyuanDiT | DiT | 46133 | HQI+HPDv2+JourneyDB | Train & Test |
| Stable Diffusion 3 Medium | DiT | 49266 | HQI+HPDv2+JourneyDB | Train & Test |
| Stable Diffusion XL | Diffusion | 49025 | HQI+HPDv2+JourneyDB | Train & Test |
| Pixart Sigma | Diffusion | 400 | HQI+HPDv2+JourneyDB | Test |
| Stable Diffusion 2 | Diffusion | 19124 | HQI+JourneyDB | Train & Test |
| CogView2 | Autoregressive | 3823 | HQI+JourneyDB | Train & Test |
| FuseDream | Diffusion | 468 | HQI+JourneyDB | Train & Test |
| VQ-Diffusion | Diffusion | 18837 | HQI+JourneyDB | Train & Test |
| Glide | Diffusion | 19989 | HQI+JourneyDB | Train & Test |
| Stable Diffusion 1.4 | Diffusion | 18596 | HQI+JourneyDB | Train & Test |
| Stable Diffusion 1.1 | Diffusion | 19043 | HQI+JourneyDB | Train & Test |
| Curated HPDv2 | - | 327763 | - | Train |
</details>

### Download HPDv3
<!-- ```
HPDv3 is comming soon! Stay tuned!
``` -->
```bash
huggingface-cli download --repo-type dataset MizzenAI/HPDv3 --local-dir /your-local-dataset-path
```

### Pairwise Training Data Format

**Important Note: For simplicity, path1's image is always the prefered one**

#### All Annotated Pairs (`all.json`)

**Important Notes: In HPDv3, we simply put the preferred sample at the first place (path1)**

`all.json` contains **all** annotated pairs except for test.

```bash
[
    # samples from HPDv3 annotation pipeline 
    {
    "prompt": "Description of the visual content or the generation prompt.",
    "choice_dist": [12, 7],           # Distribution of votes from annotators (12 votes for image1, 7 votes for image2)
    "confidence": 0.9999907,         # Confidence score reflecting preference reliability, based on annotators' capabilities (independent of choice_dist)
    "path1": "images/uuid1.jpg",     # File path to the preferred image
    "path2": "images/uuid2.jpg",     # File path to the non-preferred image
    "model1": "flux",                # Model used to generate the preferred image (path1)
    "model2": "infinity"             # Model used to generate the non-preferred image (path2)
    },
    # samples from Midjourney
    {
    "prompt": "Description of the visual content or the generation prompt.",
    "choice_dist": null,             # No distribution of votes Information from Discord
    "confidence": null,              # No Confidence Information from Discord
    "path1": "images/uuid1.jpg",     # File path to the preferred image.
    "path2": "images/uuid2.jpg",     # File path to the non-preferred image.
    "model1": "midjourney",          # Comparsion between images generated from midjourney 
    "model2": "midjourney"           # Comparsion between images generated from midjourney 
    },
    # samples from Curated HPDv2
    {
    "prompt": "Description of the visual content or the generation prompt.",
    "choice_dist": null,              # No distribution of votes Information from the original HPDv2 traindataset
    "confidence": null,               # No Confidence Information from the original HPDv2 traindataset
    "path1": "images/uuid1.jpg",     # File path to the preferred image.
    "path2": "images/uuid2.jpg",     # File path to the non-preferred image.
    "model1": "hpdv2",          # No specific model name in the original HPDv2 traindataset, set to hpdv2 
    "model2": "hpdv2"           # No specific model name in the original HPDv2 traindataset, set to hpdv2 
    },
]
```


#### Train set (`train.json`)
We sample part of training data from `all.json` to build training dataset `train.json`. Moreover, to improve robustness, we integrate random sampled part of data from [Pick-a-pic](https://huggingface.co/datasets/pickapic-anonymous/pickapic_v1) and [ImageRewardDB](https://huggingface.co/datasets/zai-org/ImageRewardDB), which is `pickapic.json` and `imagereward.json`. For these two datasets, we only provide the pair infomation, and its corresponding image can be found in their official dataset repository.


#### Test Set (`test.json`)
```bash
[
    {
        "prompt": "Description of the visual content",
        "path1": "images/uuid1.jpg",     # Preferred sample
        "path2": "images/uuid2.jpg",     # Unpreferred sample
        "model1": "flux",                # Model used to generate the preferred sample (path1).
        "model2": "infinity",            # Model used to generate the non-preferred sample (path2).

    }
]
```

## πŸ‹οΈ Training

### πŸš€ Training Command

```bash
# Use Method 2 to install locally
git clone https://github.com/MizzenAI/HPSv3.git
cd HPSv3

conda env create -f environment.yaml
conda activate hpsv3
# Recommend: Install flash-attn
pip install flash-attn==2.7.4.post1

pip install -e .

# Train with 7B model
deepspeed hpsv3/train.py --config hpsv3/config/HPSv3_7B.yaml
```

<details close>
<summary>Important Config Argument</summary>

| Configuration Section | Parameter | Value | Description |
|----------------------|-----------|-------|-------------|
| **Model Configuration** | `rm_head_type` | `"ranknet"` | Type of reward model head architecture |
| | `lora_enable` | `False` | Enable LoRA (Low-Rank Adaptation) for efficient fine-tuning. If `False`, language tower is fully trainable|
| | `vision_lora` | `False` | Apply LoRA specifically to vision components. If `False`, vision tower is fully trainable|
| | `model_name_or_path` | `"Qwen/Qwen2-VL-7B-Instruct"` | Path to the base model checkpoint |
| **Data Configuration** | `confidence_threshold` | `0.95` | Minimum confidence score for training data |
| | `train_json_list` | `[example_train.json]` | List of training data files |
| | `test_json_list` | `[validation_sets]` | List of validation datasets with names |
| | `output_dim` | `2` | Output dimension of the reward head for $\mu$ and $\sigma$|
| | `loss_type` | `"uncertainty"` | Loss function type for training |
</details>

---

## πŸ“Š Benchmark
To evaluate **HPSv3 preference accuracy** or **human preference score of image generation model**, follow the detail instruction is in [Evaluate Insctruction](evaluate/README.md)

<details open>
<summary> Preference Accuracy of HPSv3 </summary>

| Model | ImageReward | Pickscore | HPDv2 | HPDv3 |
|------|-------------|-----------|-------|-------|
| [CLIP ViT-H/14](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K) | 57.1 | 60.8 | 65.1 | 48.6 |
| [Aesthetic Score Predictor](https://github.com/christophschuhmann/improved-aesthetic-predictor) | 57.4 | 56.8 | 76.8 | 59.9 |
| [ImageReward](https://github.com/THUDM/ImageReward) | 65.1 | 61.1 | 74.0 | 58.6 |
| [PickScore](https://github.com/yuvalkirstain/PickScore) | 61.6 | <u>70.5</u> | 79.8 | <u>65.6</u> |
| [HPS](https://github.com/tgxs002/align_sd) | 61.2 | 66.7 | 77.6 | 63.8 |
| [HPSv2](https://github.com/tgxs002/HPSv2) | 65.7 | 63.8 | 83.3 | 65.3 |
| [MPS](https://github.com/Kwai-Kolors/MPS) | **67.5** | 63.1 | <u>83.5</u> | 64.3 |
| HPSv3 | <u>66.8</u> | **72.8** | **85.4** | **76.9** |

</details>

<details open>
<summary> Image Generation Benchmark of HPSv3 </summary>

| Model | Overall | Characters | Arts | Design | Architecture | Animals | Natural Scenery | Transportation | Products | Others | Plants | Food | Science |
|------|---------|------------|------|--------|--------------|---------|-----------------|----------------|----------|--------|--------|------|---------|
| Kolors | **10.55** | **11.79** | **10.47** | **9.87** | <u>10.82</u> | **10.60** | 9.89 | <u>10.68</u> | <u>10.93</u> | **10.50** | **10.63** | <u>11.06</u> | <u>9.51</u> |
| Flux-dev | <u>10.43</u> | <u>11.70</u> | <u>10.32</u> | 9.39 | **10.93** | <u>10.38</u> | <u>10.01</u> | **10.84** | **11.24** | <u>10.21</u> | 10.38 | **11.24** | 9.16 |
| Playgroundv2.5 | 10.27 | 11.07 | 9.84 | <u>9.64</u> | 10.45 | <u>10.38</u> | 9.94 | 10.51 | <u>10.62</u> | 10.15 | <u>10.62</u> | 10.84 | 9.39 |
| Infinity | 10.26 | 11.17 | 9.95 | 9.43 | 10.36 | 9.27 | **10.11** | 10.36 | 10.59 | 10.08 | 10.30 | 10.59 | **9.62** |
| CogView4 | 9.61 | 10.72 | 9.86 | 9.33 | 9.88 | 9.16 | 9.45 | 9.69 | 9.86 | 9.45 | 9.49 | 10.16 | 8.97 |
| PixArt-Ξ£ | 9.37 | 10.08 | 9.07 | 8.41 | 9.83 | 8.86 | 8.87 | 9.44 | 9.57 | 9.52 | 9.73 | 10.35 | 8.58 |
| Gemini 2.0 Flash | 9.21 | 9.98 | 8.44 | 7.64 | 10.11 | 9.42 | 9.01 | 9.74 | 9.64 | 9.55 | 10.16 | 7.61 | 9.23 |
| SDXL | 8.20 | 8.67 | 7.63 | 7.53 | 8.57 | 8.18 | 7.76 | 8.65 | 8.85 | 8.32 | 8.43 | 8.78 | 7.29 |
| HunyuanDiT | 8.19 | 7.96 | 8.11 | 8.28 | 8.71 | 7.24 | 7.86 | 8.33 | 8.55 | 8.28 | 8.31 | 8.48 | 8.20 |
| Stable Diffusion 3 Medium | 5.31 | 6.70 | 5.98 | 5.15 | 5.25 | 4.09 | 5.24 | 4.25 | 5.71 | 5.84 | 6.01 | 5.71 | 4.58 |
| SD2 | -0.24 | -0.34 | -0.56 | -1.35 | -0.24 | -0.54 | -0.32 | 1.00 | 1.11 | -0.01 | -0.38 | -0.38 | -0.84 |

</details>

---

## 🎯 CoHP (Chain-of-Human-Preference)

COHP is our novel reasoning approach for iterative image refinement that efficiently improves image quality without requiring additional training data. It works by generating images with multiple diffusion models, selecting the best one using reward models, and then iteratively refining it through image-to-image generation.

<p align="center">
  <img src="assets/cohp.png" alt="cohp" width="600"/>
</p>

### πŸš€ Usage

#### Basic Command

```bash
python hpsv3/cohp/run_cohp.py \
    --prompt "A beautiful sunset over mountains" \
    --index "sample_001" \
    --device "cuda:0" \
    --reward_model "hpsv3"
```

#### Parameters

- `--prompt`: Text prompt for image generation (required)
- `--index`: Unique identifier for saving results (required)  
- `--device`: GPU device to use (default: 'cuda:1')
- `--reward_model`: Reward model for scoring images
  - `hpsv3`: HPSv3 model (default, recommended)
  - `hpsv2`: HPSv2 model
  - `imagereward`: ImageReward model
  - `pickscore`: PickScore model

#### Supported Generation Models

COHP uses multiple state-of-the-art diffusion models for initial generation: **FLUX.1 dev**, **Kolors**, **Stable Diffusion 3 Medium**, **Playground v2.5**

#### How COHP Works

1. **Multi-Model Generation**: Generates images using all supported models
2. **Reward Scoring**: Evaluates each image using the specified reward model
3. **Best Model Selection**: Chooses the model that produced the highest-scoring image
4. **Iterative Refinement**: Performs 4 rounds of image-to-image generation to improve quality
5. **Adaptive Strength**: Uses strength=0.8 for rounds 1-2, then 0.5 for rounds 3-4

---

## 🦾 Results as Reward Model

We perform [DanceGRPO](https://github.com/XueZeyue/DanceGRPO) as the reinforcement learning method. Here are some results.
All experiments using the same setting and we use **Stable Diffusion 1.4** as our backbone.

<p align="center">
  <img src="assets/rl1.jpg"  width="600"/>
</p>

<p align="center">
  <img src="assets/rl2.jpg"  width="600"/>
</p>


### More Results of HPsv3 as Reward Model (Stable Diffusion 1.4)
<p align="center">
  <img src="assets/rl_teaser.jpg" alt="cohp" width="600"/>
</p>

## πŸ“š Citation

If you find HPSv3 useful in your research, please cite our work:

```bibtex
@inproceedings{hpsv3,
  title={HPSv3: Towards Wide-Spectrum Human Preference Score},
  author={Ma, Yuhang and Wu, Xiaoshi and Sun, Keqiang and Li, Hongsheng},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2025}
}
```


---

## πŸ™ Acknowledgements

We would like to thank the [VideoAlign](https://github.com/KwaiVGI/VideoAlign) codebase for providing valuable references.

---

## πŸ’¬ Support

For questions and support:
- **Issues**: [GitHub Issues](https://github.com/MizzenAI/HPSv3/issues)
- **Email**: yhshui@mizzen.ai & yhma@mizzen.ai