Mungert commited on
Commit
a969736
·
verified ·
1 Parent(s): 209fe84

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +180 -0
README.md ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # <span style="color: #7FFF7F;">KAT-Dev-72B-Exp GGUF Models</span>
6
+
7
+
8
+ ## <span style="color: #7F7FFF;">Model Generation Details</span>
9
+
10
+ This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`56b479584`](https://github.com/ggerganov/llama.cpp/commit/56b4795842d852152222ca7a2d4304008facf1b9).
11
+
12
+
13
+
14
+
15
+
16
+ ---
17
+
18
+ ## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>
19
+
20
+ I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.
21
+
22
+ In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:
23
+ 👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)
24
+
25
+ While this does increase model file size, it significantly improves precision for a given quantization level.
26
+
27
+ ### **I'd love your feedback—have you tried this? How does it perform for you?**
28
+
29
+
30
+
31
+
32
+ ---
33
+
34
+ <a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
35
+ Click here to get info on choosing the right GGUF model format
36
+ </a>
37
+
38
+ ---
39
+
40
+
41
+
42
+ <!--Begin Original Model Card-->
43
+
44
+ <div align="center">
45
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/61ee40a269351366e29972ad/KIYEa1c_WJEWPpeS0L_k1.png" width="100%" alt="Kwaipilot" />
46
+ </div>
47
+
48
+ <hr>
49
+
50
+
51
+ # News
52
+
53
+ 🔥 We’re thrilled to announce the release of **KAT-Dev-72B-Exp**, our latest and most powerful model yet!
54
+
55
+ 🔥 You can now try our **strongest** proprietary coder model **KAT-Coder** directly on the [**StreamLake**](https://www.streamlake.ai/product/kat-coder) platform **for free**.
56
+
57
+ # Highlights
58
+ **KAT-Dev-72B-Exp** is an open-source 72B-parameter model for software engineering tasks.
59
+
60
+ On SWE-Bench Verified, **KAT-Dev-72B-Exp** achieves **74.6%** accuracy ⚡ — **when evaluated strictly with the SWE-agent scaffold**.
61
+
62
+ **KAT-Dev-72B-Exp** is the experimental reinforcement-learning version of the KAT-Coder model. Through this open-source release, we aim to reveal the technical innovations behind KAT-Coder’s large-scale RL to developers and researchers.
63
+
64
+
65
+ ![Kim 2025-10-10 165138](https://cdn-uploads.huggingface.co/production/uploads/61ee40a269351366e29972ad/-1nx5HYc-wTjUFNbf-GfO.png)
66
+
67
+ # Introduction
68
+
69
+ We rewrote the attention kernel and redesigned the training engine for shared prefix trajectories to achieve highly efficient RL training, especially for scaffolds leveraging context management.
70
+
71
+ Furthermore, to prevent exploration collapse observed in RL training, we reshaped advantage distribution based on pass rates: amplifying the advantage scale of highly exploratory groups while reducing that of low-exploration ones.
72
+
73
+
74
+ # Quickstart
75
+
76
+ ```python
77
+ from transformers import AutoModelForCausalLM, AutoTokenizer
78
+
79
+ model_name = "KAT-Dev-72B-Exp"
80
+
81
+ # load the tokenizer and the model
82
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
83
+ model = AutoModelForCausalLM.from_pretrained(
84
+ model_name,
85
+ torch_dtype="auto",
86
+ device_map="auto"
87
+ )
88
+
89
+ # prepare the model input
90
+ prompt = "Give me a short introduction to large language model."
91
+ messages = [
92
+ {"role": "user", "content": prompt}
93
+ ]
94
+ text = tokenizer.apply_chat_template(
95
+ messages,
96
+ tokenize=False,
97
+ add_generation_prompt=True,
98
+ )
99
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
100
+
101
+ # conduct text completion
102
+ generated_ids = model.generate(
103
+ **model_inputs,
104
+ max_new_tokens=65536
105
+ )
106
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
107
+
108
+ content = tokenizer.decode(output_ids, skip_special_tokens=True)
109
+
110
+ print("content:", content)
111
+ ```
112
+
113
+ # SWE agent Evaluation Parameters
114
+
115
+ ```
116
+ temperature: 0.6
117
+ max_turns: 150
118
+ history_processors.n: 100
119
+ ```
120
+
121
+ For full settings please refer to inference.yaml
122
+
123
+ <!--End Original Model Card-->
124
+
125
+ ---
126
+
127
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
128
+
129
+ Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:
130
+
131
+ 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
132
+
133
+
134
+ The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
135
+
136
+ 💬 **How to test**:
137
+ Choose an **AI assistant type**:
138
+ - `TurboLLM` (GPT-4.1-mini)
139
+ - `HugLLM` (Hugginface Open-source models)
140
+ - `TestLLM` (Experimental CPU-only)
141
+
142
+ ### **What I’m Testing**
143
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
144
+ - **Function calling** against live network services
145
+ - **How small can a model go** while still handling:
146
+ - Automated **Nmap security scans**
147
+ - **Quantum-readiness checks**
148
+ - **Network Monitoring tasks**
149
+
150
+ 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
151
+ - ✅ **Zero-configuration setup**
152
+ - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
153
+ - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
154
+
155
+ ### **Other Assistants**
156
+ 🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
157
+ - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
158
+ - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
159
+ - **Real-time network diagnostics and monitoring**
160
+ - **Security Audits**
161
+ - **Penetration testing** (Nmap/Metasploit)
162
+
163
+ 🔵 **HugLLM** – Latest Open-source models:
164
+ - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
165
+
166
+ ### 💡 **Example commands you could test**:
167
+ 1. `"Give me info on my websites SSL certificate"`
168
+ 2. `"Check if my server is using quantum safe encyption for communication"`
169
+ 3. `"Run a comprehensive security audit on my server"`
170
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!
171
+
172
+ ### Final Word
173
+
174
+ I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
175
+
176
+ If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
177
+
178
+ I'm also open to job opportunities or sponsorship.
179
+
180
+ Thank you! 😊