UniAD V2.0 training config file
Browse files- config/base_bevformer.py +447 -0
- config/base_e2e.py +897 -0
- config/base_track_map.py +780 -0
config/base_bevformer.py
ADDED
|
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
|
| 2 |
+
class_names = [
|
| 3 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
|
| 4 |
+
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 5 |
+
]
|
| 6 |
+
dataset_type = 'CustomNuScenesDataset'
|
| 7 |
+
data_root = 'data/nuscenes/'
|
| 8 |
+
input_modality = dict(
|
| 9 |
+
use_lidar=False,
|
| 10 |
+
use_camera=True,
|
| 11 |
+
use_radar=False,
|
| 12 |
+
use_map=False,
|
| 13 |
+
use_external=True)
|
| 14 |
+
file_client_args = dict(backend='disk')
|
| 15 |
+
train_pipeline = [
|
| 16 |
+
dict(
|
| 17 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 18 |
+
to_float32=True,
|
| 19 |
+
file_client_args=dict(backend='disk'),
|
| 20 |
+
img_root=''),
|
| 21 |
+
dict(type='PhotoMetricDistortionMultiViewImage'),
|
| 22 |
+
dict(
|
| 23 |
+
type='LoadAnnotations3D',
|
| 24 |
+
with_bbox_3d=True,
|
| 25 |
+
with_label_3d=True,
|
| 26 |
+
with_attr_label=False),
|
| 27 |
+
dict(
|
| 28 |
+
type='ObjectRangeFilter',
|
| 29 |
+
point_cloud_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]),
|
| 30 |
+
dict(
|
| 31 |
+
type='ObjectNameFilter',
|
| 32 |
+
classes=[
|
| 33 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 34 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 35 |
+
]),
|
| 36 |
+
dict(
|
| 37 |
+
type='NormalizeMultiviewImage',
|
| 38 |
+
mean=[103.53, 116.28, 123.675],
|
| 39 |
+
std=[1.0, 1.0, 1.0],
|
| 40 |
+
to_rgb=False),
|
| 41 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 42 |
+
dict(
|
| 43 |
+
type='DefaultFormatBundle3D',
|
| 44 |
+
class_names=[
|
| 45 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 46 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 47 |
+
]),
|
| 48 |
+
dict(type='CustomCollect3D', keys=['gt_bboxes_3d', 'gt_labels_3d', 'img'])
|
| 49 |
+
]
|
| 50 |
+
test_pipeline = [
|
| 51 |
+
dict(
|
| 52 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 53 |
+
to_float32=True,
|
| 54 |
+
file_client_args=dict(backend='disk'),
|
| 55 |
+
img_root=''),
|
| 56 |
+
dict(
|
| 57 |
+
type='NormalizeMultiviewImage',
|
| 58 |
+
mean=[103.53, 116.28, 123.675],
|
| 59 |
+
std=[1.0, 1.0, 1.0],
|
| 60 |
+
to_rgb=False),
|
| 61 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 62 |
+
dict(
|
| 63 |
+
type='MultiScaleFlipAug3D',
|
| 64 |
+
img_scale=(1600, 900),
|
| 65 |
+
pts_scale_ratio=1,
|
| 66 |
+
flip=False,
|
| 67 |
+
transforms=[
|
| 68 |
+
dict(
|
| 69 |
+
type='DefaultFormatBundle3D',
|
| 70 |
+
class_names=[
|
| 71 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 72 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian',
|
| 73 |
+
'traffic_cone'
|
| 74 |
+
],
|
| 75 |
+
with_label=False),
|
| 76 |
+
dict(type='CustomCollect3D', keys=['img'])
|
| 77 |
+
])
|
| 78 |
+
]
|
| 79 |
+
eval_pipeline = [
|
| 80 |
+
dict(
|
| 81 |
+
type='LoadPointsFromFile',
|
| 82 |
+
coord_type='LIDAR',
|
| 83 |
+
load_dim=5,
|
| 84 |
+
use_dim=5,
|
| 85 |
+
file_client_args=dict(backend='disk')),
|
| 86 |
+
dict(
|
| 87 |
+
type='LoadPointsFromMultiSweeps',
|
| 88 |
+
sweeps_num=10,
|
| 89 |
+
file_client_args=dict(backend='disk')),
|
| 90 |
+
dict(
|
| 91 |
+
type='DefaultFormatBundle3D',
|
| 92 |
+
class_names=[
|
| 93 |
+
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
|
| 94 |
+
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
|
| 95 |
+
],
|
| 96 |
+
with_label=False),
|
| 97 |
+
dict(type='Collect3D', keys=['points'])
|
| 98 |
+
]
|
| 99 |
+
data = dict(
|
| 100 |
+
samples_per_gpu=1,
|
| 101 |
+
workers_per_gpu=4,
|
| 102 |
+
train=dict(
|
| 103 |
+
type='CustomNuScenesDataset',
|
| 104 |
+
data_root='data/nuscenes/',
|
| 105 |
+
ann_file='data/infos/nuscenes_infos_temporal_train.pkl',
|
| 106 |
+
pipeline=[
|
| 107 |
+
dict(
|
| 108 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 109 |
+
to_float32=True,
|
| 110 |
+
file_client_args=dict(backend='disk'),
|
| 111 |
+
img_root=''),
|
| 112 |
+
dict(type='PhotoMetricDistortionMultiViewImage'),
|
| 113 |
+
dict(
|
| 114 |
+
type='LoadAnnotations3D',
|
| 115 |
+
with_bbox_3d=True,
|
| 116 |
+
with_label_3d=True,
|
| 117 |
+
with_attr_label=False),
|
| 118 |
+
dict(
|
| 119 |
+
type='ObjectRangeFilter',
|
| 120 |
+
point_cloud_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]),
|
| 121 |
+
dict(
|
| 122 |
+
type='ObjectNameFilter',
|
| 123 |
+
classes=[
|
| 124 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 125 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian',
|
| 126 |
+
'traffic_cone'
|
| 127 |
+
]),
|
| 128 |
+
dict(
|
| 129 |
+
type='NormalizeMultiviewImage',
|
| 130 |
+
mean=[103.53, 116.28, 123.675],
|
| 131 |
+
std=[1.0, 1.0, 1.0],
|
| 132 |
+
to_rgb=False),
|
| 133 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 134 |
+
dict(
|
| 135 |
+
type='DefaultFormatBundle3D',
|
| 136 |
+
class_names=[
|
| 137 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 138 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian',
|
| 139 |
+
'traffic_cone'
|
| 140 |
+
]),
|
| 141 |
+
dict(
|
| 142 |
+
type='CustomCollect3D',
|
| 143 |
+
keys=['gt_bboxes_3d', 'gt_labels_3d', 'img'])
|
| 144 |
+
],
|
| 145 |
+
classes=[
|
| 146 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 147 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 148 |
+
],
|
| 149 |
+
modality=dict(
|
| 150 |
+
use_lidar=False,
|
| 151 |
+
use_camera=True,
|
| 152 |
+
use_radar=False,
|
| 153 |
+
use_map=False,
|
| 154 |
+
use_external=True),
|
| 155 |
+
test_mode=False,
|
| 156 |
+
box_type_3d='LiDAR',
|
| 157 |
+
use_valid_flag=True,
|
| 158 |
+
bev_size=(200, 200),
|
| 159 |
+
queue_length=4),
|
| 160 |
+
val=dict(
|
| 161 |
+
type='CustomNuScenesDataset',
|
| 162 |
+
data_root='data/nuscenes/',
|
| 163 |
+
ann_file='data/infos/nuscenes_infos_temporal_val.pkl',
|
| 164 |
+
pipeline=[
|
| 165 |
+
dict(
|
| 166 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 167 |
+
to_float32=True,
|
| 168 |
+
file_client_args=dict(backend='disk'),
|
| 169 |
+
img_root=''),
|
| 170 |
+
dict(
|
| 171 |
+
type='NormalizeMultiviewImage',
|
| 172 |
+
mean=[103.53, 116.28, 123.675],
|
| 173 |
+
std=[1.0, 1.0, 1.0],
|
| 174 |
+
to_rgb=False),
|
| 175 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 176 |
+
dict(
|
| 177 |
+
type='MultiScaleFlipAug3D',
|
| 178 |
+
img_scale=(1600, 900),
|
| 179 |
+
pts_scale_ratio=1,
|
| 180 |
+
flip=False,
|
| 181 |
+
transforms=[
|
| 182 |
+
dict(
|
| 183 |
+
type='DefaultFormatBundle3D',
|
| 184 |
+
class_names=[
|
| 185 |
+
'car', 'truck', 'construction_vehicle', 'bus',
|
| 186 |
+
'trailer', 'barrier', 'motorcycle', 'bicycle',
|
| 187 |
+
'pedestrian', 'traffic_cone'
|
| 188 |
+
],
|
| 189 |
+
with_label=False),
|
| 190 |
+
dict(type='CustomCollect3D', keys=['img'])
|
| 191 |
+
])
|
| 192 |
+
],
|
| 193 |
+
classes=[
|
| 194 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 195 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 196 |
+
],
|
| 197 |
+
modality=dict(
|
| 198 |
+
use_lidar=False,
|
| 199 |
+
use_camera=True,
|
| 200 |
+
use_radar=False,
|
| 201 |
+
use_map=False,
|
| 202 |
+
use_external=True),
|
| 203 |
+
test_mode=True,
|
| 204 |
+
box_type_3d='LiDAR',
|
| 205 |
+
bev_size=(200, 200),
|
| 206 |
+
samples_per_gpu=1),
|
| 207 |
+
test=dict(
|
| 208 |
+
type='CustomNuScenesDataset',
|
| 209 |
+
data_root='data/nuscenes/',
|
| 210 |
+
ann_file='data/infos/nuscenes_infos_temporal_val.pkl',
|
| 211 |
+
pipeline=[
|
| 212 |
+
dict(
|
| 213 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 214 |
+
to_float32=True,
|
| 215 |
+
file_client_args=dict(backend='disk'),
|
| 216 |
+
img_root=''),
|
| 217 |
+
dict(
|
| 218 |
+
type='NormalizeMultiviewImage',
|
| 219 |
+
mean=[103.53, 116.28, 123.675],
|
| 220 |
+
std=[1.0, 1.0, 1.0],
|
| 221 |
+
to_rgb=False),
|
| 222 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 223 |
+
dict(
|
| 224 |
+
type='MultiScaleFlipAug3D',
|
| 225 |
+
img_scale=(1600, 900),
|
| 226 |
+
pts_scale_ratio=1,
|
| 227 |
+
flip=False,
|
| 228 |
+
transforms=[
|
| 229 |
+
dict(
|
| 230 |
+
type='DefaultFormatBundle3D',
|
| 231 |
+
class_names=[
|
| 232 |
+
'car', 'truck', 'construction_vehicle', 'bus',
|
| 233 |
+
'trailer', 'barrier', 'motorcycle', 'bicycle',
|
| 234 |
+
'pedestrian', 'traffic_cone'
|
| 235 |
+
],
|
| 236 |
+
with_label=False),
|
| 237 |
+
dict(type='CustomCollect3D', keys=['img'])
|
| 238 |
+
])
|
| 239 |
+
],
|
| 240 |
+
classes=[
|
| 241 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 242 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 243 |
+
],
|
| 244 |
+
modality=dict(
|
| 245 |
+
use_lidar=False,
|
| 246 |
+
use_camera=True,
|
| 247 |
+
use_radar=False,
|
| 248 |
+
use_map=False,
|
| 249 |
+
use_external=True),
|
| 250 |
+
test_mode=True,
|
| 251 |
+
box_type_3d='LiDAR',
|
| 252 |
+
bev_size=(200, 200)),
|
| 253 |
+
shuffler_sampler=dict(type='DistributedGroupSampler'),
|
| 254 |
+
nonshuffler_sampler=dict(type='DistributedSampler'))
|
| 255 |
+
evaluation = dict(
|
| 256 |
+
interval=6,
|
| 257 |
+
pipeline=[
|
| 258 |
+
dict(
|
| 259 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 260 |
+
to_float32=True,
|
| 261 |
+
file_client_args=dict(backend='disk'),
|
| 262 |
+
img_root=''),
|
| 263 |
+
dict(
|
| 264 |
+
type='NormalizeMultiviewImage',
|
| 265 |
+
mean=[103.53, 116.28, 123.675],
|
| 266 |
+
std=[1.0, 1.0, 1.0],
|
| 267 |
+
to_rgb=False),
|
| 268 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 269 |
+
dict(
|
| 270 |
+
type='MultiScaleFlipAug3D',
|
| 271 |
+
img_scale=(1600, 900),
|
| 272 |
+
pts_scale_ratio=1,
|
| 273 |
+
flip=False,
|
| 274 |
+
transforms=[
|
| 275 |
+
dict(
|
| 276 |
+
type='DefaultFormatBundle3D',
|
| 277 |
+
class_names=[
|
| 278 |
+
'car', 'truck', 'construction_vehicle', 'bus',
|
| 279 |
+
'trailer', 'barrier', 'motorcycle', 'bicycle',
|
| 280 |
+
'pedestrian', 'traffic_cone'
|
| 281 |
+
],
|
| 282 |
+
with_label=False),
|
| 283 |
+
dict(type='CustomCollect3D', keys=['img'])
|
| 284 |
+
])
|
| 285 |
+
])
|
| 286 |
+
checkpoint_config = dict(interval=1)
|
| 287 |
+
log_config = dict(
|
| 288 |
+
interval=50,
|
| 289 |
+
hooks=[dict(type='TextLoggerHook'),
|
| 290 |
+
dict(type='TensorboardLoggerHook')])
|
| 291 |
+
dist_params = dict(backend='nccl')
|
| 292 |
+
log_level = 'INFO'
|
| 293 |
+
work_dir = 'projects/work_dirs/bevformer/base_bevformer/'
|
| 294 |
+
load_from = 'ckpts/r101_dcn_fcos3d_pretrain.pth'
|
| 295 |
+
resume_from = None
|
| 296 |
+
workflow = [('train', 1)]
|
| 297 |
+
plugin = True
|
| 298 |
+
plugin_dir = 'projects/mmdet3d_plugin/'
|
| 299 |
+
voxel_size = [0.2, 0.2, 8]
|
| 300 |
+
img_norm_cfg = dict(
|
| 301 |
+
mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
|
| 302 |
+
_dim_ = 256
|
| 303 |
+
_pos_dim_ = 128
|
| 304 |
+
_ffn_dim_ = 512
|
| 305 |
+
_num_levels_ = 4
|
| 306 |
+
bev_h_ = 200
|
| 307 |
+
bev_w_ = 200
|
| 308 |
+
queue_length = 4
|
| 309 |
+
model = dict(
|
| 310 |
+
type='BEVFormer',
|
| 311 |
+
use_grid_mask=True,
|
| 312 |
+
video_test_mode=True,
|
| 313 |
+
img_backbone=dict(
|
| 314 |
+
type='ResNet',
|
| 315 |
+
depth=101,
|
| 316 |
+
num_stages=4,
|
| 317 |
+
out_indices=(1, 2, 3),
|
| 318 |
+
frozen_stages=1,
|
| 319 |
+
norm_cfg=dict(type='BN2d', requires_grad=False),
|
| 320 |
+
norm_eval=True,
|
| 321 |
+
style='caffe',
|
| 322 |
+
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
|
| 323 |
+
stage_with_dcn=(False, False, True, True)),
|
| 324 |
+
img_neck=dict(
|
| 325 |
+
type='FPN',
|
| 326 |
+
in_channels=[512, 1024, 2048],
|
| 327 |
+
out_channels=256,
|
| 328 |
+
start_level=0,
|
| 329 |
+
add_extra_convs='on_output',
|
| 330 |
+
num_outs=4,
|
| 331 |
+
relu_before_extra_convs=True),
|
| 332 |
+
pts_bbox_head=dict(
|
| 333 |
+
type='BEVFormerHead',
|
| 334 |
+
bev_h=200,
|
| 335 |
+
bev_w=200,
|
| 336 |
+
num_query=900,
|
| 337 |
+
num_classes=10,
|
| 338 |
+
in_channels=256,
|
| 339 |
+
sync_cls_avg_factor=True,
|
| 340 |
+
with_box_refine=True,
|
| 341 |
+
as_two_stage=False,
|
| 342 |
+
transformer=dict(
|
| 343 |
+
type='PerceptionTransformer',
|
| 344 |
+
rotate_prev_bev=True,
|
| 345 |
+
use_shift=True,
|
| 346 |
+
use_can_bus=True,
|
| 347 |
+
embed_dims=256,
|
| 348 |
+
encoder=dict(
|
| 349 |
+
type='BEVFormerEncoder',
|
| 350 |
+
num_layers=6,
|
| 351 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 352 |
+
num_points_in_pillar=4,
|
| 353 |
+
return_intermediate=False,
|
| 354 |
+
transformerlayers=dict(
|
| 355 |
+
type='BEVFormerLayer',
|
| 356 |
+
attn_cfgs=[
|
| 357 |
+
dict(
|
| 358 |
+
type='TemporalSelfAttention',
|
| 359 |
+
embed_dims=256,
|
| 360 |
+
num_levels=1),
|
| 361 |
+
dict(
|
| 362 |
+
type='SpatialCrossAttention',
|
| 363 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 364 |
+
deformable_attention=dict(
|
| 365 |
+
type='MSDeformableAttention3D',
|
| 366 |
+
embed_dims=256,
|
| 367 |
+
num_points=8,
|
| 368 |
+
num_levels=4),
|
| 369 |
+
embed_dims=256)
|
| 370 |
+
],
|
| 371 |
+
feedforward_channels=512,
|
| 372 |
+
ffn_dropout=0.1,
|
| 373 |
+
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
| 374 |
+
'ffn', 'norm'))),
|
| 375 |
+
decoder=dict(
|
| 376 |
+
type='DetectionTransformerDecoder',
|
| 377 |
+
num_layers=6,
|
| 378 |
+
return_intermediate=True,
|
| 379 |
+
transformerlayers=dict(
|
| 380 |
+
type='DetrTransformerDecoderLayer',
|
| 381 |
+
attn_cfgs=[
|
| 382 |
+
dict(
|
| 383 |
+
type='MultiheadAttention',
|
| 384 |
+
embed_dims=256,
|
| 385 |
+
num_heads=8,
|
| 386 |
+
dropout=0.1),
|
| 387 |
+
dict(
|
| 388 |
+
type='CustomMSDeformableAttention',
|
| 389 |
+
embed_dims=256,
|
| 390 |
+
num_levels=1)
|
| 391 |
+
],
|
| 392 |
+
feedforward_channels=512,
|
| 393 |
+
ffn_dropout=0.1,
|
| 394 |
+
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
| 395 |
+
'ffn', 'norm')))),
|
| 396 |
+
bbox_coder=dict(
|
| 397 |
+
type='NMSFreeCoder',
|
| 398 |
+
post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
|
| 399 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 400 |
+
max_num=300,
|
| 401 |
+
voxel_size=[0.2, 0.2, 8],
|
| 402 |
+
num_classes=10),
|
| 403 |
+
positional_encoding=dict(
|
| 404 |
+
type='LearnedPositionalEncoding',
|
| 405 |
+
num_feats=128,
|
| 406 |
+
row_num_embed=200,
|
| 407 |
+
col_num_embed=200),
|
| 408 |
+
loss_cls=dict(
|
| 409 |
+
type='FocalLoss',
|
| 410 |
+
use_sigmoid=True,
|
| 411 |
+
gamma=2.0,
|
| 412 |
+
alpha=0.25,
|
| 413 |
+
loss_weight=2.0),
|
| 414 |
+
loss_bbox=dict(type='L1Loss', loss_weight=0.25),
|
| 415 |
+
loss_iou=dict(type='GIoULoss', loss_weight=0.0)),
|
| 416 |
+
train_cfg=dict(
|
| 417 |
+
pts=dict(
|
| 418 |
+
grid_size=[512, 512, 1],
|
| 419 |
+
voxel_size=[0.2, 0.2, 8],
|
| 420 |
+
point_cloud_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 421 |
+
out_size_factor=4,
|
| 422 |
+
assigner=dict(
|
| 423 |
+
type='HungarianAssigner3D',
|
| 424 |
+
cls_cost=dict(type='FocalLossCost', weight=2.0),
|
| 425 |
+
reg_cost=dict(type='BBox3DL1Cost', weight=0.25),
|
| 426 |
+
iou_cost=dict(type='IoUCost', weight=0.0),
|
| 427 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]))))
|
| 428 |
+
info_root = 'data/infos/'
|
| 429 |
+
ann_file_train = 'data/infos/nuscenes_infos_temporal_train.pkl'
|
| 430 |
+
ann_file_val = 'data/infos/nuscenes_infos_temporal_val.pkl'
|
| 431 |
+
ann_file_test = 'data/infos/nuscenes_infos_temporal_val.pkl'
|
| 432 |
+
optimizer = dict(
|
| 433 |
+
type='AdamW',
|
| 434 |
+
lr=0.0002,
|
| 435 |
+
paramwise_cfg=dict(custom_keys=dict(img_backbone=dict(lr_mult=0.1))),
|
| 436 |
+
weight_decay=0.01)
|
| 437 |
+
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
|
| 438 |
+
lr_config = dict(
|
| 439 |
+
policy='CosineAnnealing',
|
| 440 |
+
warmup='linear',
|
| 441 |
+
warmup_iters=500,
|
| 442 |
+
warmup_ratio=0.3333333333333333,
|
| 443 |
+
min_lr_ratio=0.001)
|
| 444 |
+
total_epochs = 24
|
| 445 |
+
runner = dict(type='EpochBasedRunner', max_epochs=24)
|
| 446 |
+
logger_name = 'mmdet'
|
| 447 |
+
gpu_ids = range(0, 1)
|
config/base_e2e.py
ADDED
|
@@ -0,0 +1,897 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
|
| 2 |
+
class_names = [
|
| 3 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
|
| 4 |
+
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 5 |
+
]
|
| 6 |
+
dataset_type = 'NuScenesE2EDataset'
|
| 7 |
+
data_root = 'data/nuscenes/'
|
| 8 |
+
input_modality = dict(
|
| 9 |
+
use_lidar=False,
|
| 10 |
+
use_camera=True,
|
| 11 |
+
use_radar=False,
|
| 12 |
+
use_map=False,
|
| 13 |
+
use_external=True)
|
| 14 |
+
file_client_args = dict(backend='disk')
|
| 15 |
+
train_pipeline = [
|
| 16 |
+
dict(
|
| 17 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 18 |
+
to_float32=True,
|
| 19 |
+
file_client_args=dict(backend='disk'),
|
| 20 |
+
img_root=''),
|
| 21 |
+
dict(type='PhotoMetricDistortionMultiViewImage'),
|
| 22 |
+
dict(
|
| 23 |
+
type='LoadAnnotations3D_E2E',
|
| 24 |
+
with_bbox_3d=True,
|
| 25 |
+
with_label_3d=True,
|
| 26 |
+
with_attr_label=False,
|
| 27 |
+
with_future_anns=True,
|
| 28 |
+
with_ins_inds_3d=True,
|
| 29 |
+
ins_inds_add_1=True),
|
| 30 |
+
dict(
|
| 31 |
+
type='GenerateOccFlowLabels',
|
| 32 |
+
grid_conf=dict(
|
| 33 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 34 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 35 |
+
zbound=[-10.0, 10.0, 20.0]),
|
| 36 |
+
ignore_index=255,
|
| 37 |
+
only_vehicle=True,
|
| 38 |
+
filter_invisible=False),
|
| 39 |
+
dict(
|
| 40 |
+
type='ObjectRangeFilterTrack',
|
| 41 |
+
point_cloud_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]),
|
| 42 |
+
dict(
|
| 43 |
+
type='ObjectNameFilterTrack',
|
| 44 |
+
classes=[
|
| 45 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 46 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 47 |
+
]),
|
| 48 |
+
dict(
|
| 49 |
+
type='NormalizeMultiviewImage',
|
| 50 |
+
mean=[103.53, 116.28, 123.675],
|
| 51 |
+
std=[1.0, 1.0, 1.0],
|
| 52 |
+
to_rgb=False),
|
| 53 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 54 |
+
dict(
|
| 55 |
+
type='DefaultFormatBundle3D',
|
| 56 |
+
class_names=[
|
| 57 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 58 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 59 |
+
]),
|
| 60 |
+
dict(
|
| 61 |
+
type='CustomCollect3D',
|
| 62 |
+
keys=[
|
| 63 |
+
'gt_bboxes_3d', 'gt_labels_3d', 'gt_inds', 'img', 'timestamp',
|
| 64 |
+
'l2g_r_mat', 'l2g_t', 'gt_fut_traj', 'gt_fut_traj_mask',
|
| 65 |
+
'gt_past_traj', 'gt_past_traj_mask', 'gt_sdc_bbox', 'gt_sdc_label',
|
| 66 |
+
'gt_sdc_fut_traj', 'gt_sdc_fut_traj_mask', 'gt_lane_labels',
|
| 67 |
+
'gt_lane_bboxes', 'gt_lane_masks', 'gt_segmentation',
|
| 68 |
+
'gt_instance', 'gt_centerness', 'gt_offset', 'gt_flow',
|
| 69 |
+
'gt_backward_flow', 'gt_occ_has_invalid_frame',
|
| 70 |
+
'gt_occ_img_is_valid', 'gt_future_boxes', 'gt_future_labels',
|
| 71 |
+
'sdc_planning', 'sdc_planning_mask', 'command'
|
| 72 |
+
])
|
| 73 |
+
]
|
| 74 |
+
test_pipeline = [
|
| 75 |
+
dict(
|
| 76 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 77 |
+
to_float32=True,
|
| 78 |
+
file_client_args=dict(backend='disk'),
|
| 79 |
+
img_root=''),
|
| 80 |
+
dict(
|
| 81 |
+
type='NormalizeMultiviewImage',
|
| 82 |
+
mean=[103.53, 116.28, 123.675],
|
| 83 |
+
std=[1.0, 1.0, 1.0],
|
| 84 |
+
to_rgb=False),
|
| 85 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 86 |
+
dict(
|
| 87 |
+
type='LoadAnnotations3D_E2E',
|
| 88 |
+
with_bbox_3d=False,
|
| 89 |
+
with_label_3d=False,
|
| 90 |
+
with_attr_label=False,
|
| 91 |
+
with_future_anns=True,
|
| 92 |
+
with_ins_inds_3d=False,
|
| 93 |
+
ins_inds_add_1=True),
|
| 94 |
+
dict(
|
| 95 |
+
type='GenerateOccFlowLabels',
|
| 96 |
+
grid_conf=dict(
|
| 97 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 98 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 99 |
+
zbound=[-10.0, 10.0, 20.0]),
|
| 100 |
+
ignore_index=255,
|
| 101 |
+
only_vehicle=True,
|
| 102 |
+
filter_invisible=False),
|
| 103 |
+
dict(
|
| 104 |
+
type='MultiScaleFlipAug3D',
|
| 105 |
+
img_scale=(1600, 900),
|
| 106 |
+
pts_scale_ratio=1,
|
| 107 |
+
flip=False,
|
| 108 |
+
transforms=[
|
| 109 |
+
dict(
|
| 110 |
+
type='DefaultFormatBundle3D',
|
| 111 |
+
class_names=[
|
| 112 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 113 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian',
|
| 114 |
+
'traffic_cone'
|
| 115 |
+
],
|
| 116 |
+
with_label=False),
|
| 117 |
+
dict(
|
| 118 |
+
type='CustomCollect3D',
|
| 119 |
+
keys=[
|
| 120 |
+
'img', 'timestamp', 'l2g_r_mat', 'l2g_t', 'gt_lane_labels',
|
| 121 |
+
'gt_lane_bboxes', 'gt_lane_masks', 'gt_segmentation',
|
| 122 |
+
'gt_instance', 'gt_centerness', 'gt_offset', 'gt_flow',
|
| 123 |
+
'gt_backward_flow', 'gt_occ_has_invalid_frame',
|
| 124 |
+
'gt_occ_img_is_valid', 'sdc_planning', 'sdc_planning_mask',
|
| 125 |
+
'command'
|
| 126 |
+
])
|
| 127 |
+
])
|
| 128 |
+
]
|
| 129 |
+
eval_pipeline = [
|
| 130 |
+
dict(
|
| 131 |
+
type='LoadPointsFromFile',
|
| 132 |
+
coord_type='LIDAR',
|
| 133 |
+
load_dim=5,
|
| 134 |
+
use_dim=5,
|
| 135 |
+
file_client_args=dict(backend='disk')),
|
| 136 |
+
dict(
|
| 137 |
+
type='LoadPointsFromMultiSweeps',
|
| 138 |
+
sweeps_num=10,
|
| 139 |
+
file_client_args=dict(backend='disk')),
|
| 140 |
+
dict(
|
| 141 |
+
type='DefaultFormatBundle3D',
|
| 142 |
+
class_names=[
|
| 143 |
+
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
|
| 144 |
+
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
|
| 145 |
+
],
|
| 146 |
+
with_label=False),
|
| 147 |
+
dict(type='Collect3D', keys=['points'])
|
| 148 |
+
]
|
| 149 |
+
data = dict(
|
| 150 |
+
samples_per_gpu=1,
|
| 151 |
+
workers_per_gpu=8,
|
| 152 |
+
train=dict(
|
| 153 |
+
type='NuScenesE2EDataset',
|
| 154 |
+
data_root='data/nuscenes/',
|
| 155 |
+
ann_file='data/infos/nuscenes_infos_temporal_train.pkl',
|
| 156 |
+
pipeline=[
|
| 157 |
+
dict(
|
| 158 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 159 |
+
to_float32=True,
|
| 160 |
+
file_client_args=dict(backend='disk'),
|
| 161 |
+
img_root=''),
|
| 162 |
+
dict(type='PhotoMetricDistortionMultiViewImage'),
|
| 163 |
+
dict(
|
| 164 |
+
type='LoadAnnotations3D_E2E',
|
| 165 |
+
with_bbox_3d=True,
|
| 166 |
+
with_label_3d=True,
|
| 167 |
+
with_attr_label=False,
|
| 168 |
+
with_future_anns=True,
|
| 169 |
+
with_ins_inds_3d=True,
|
| 170 |
+
ins_inds_add_1=True),
|
| 171 |
+
dict(
|
| 172 |
+
type='GenerateOccFlowLabels',
|
| 173 |
+
grid_conf=dict(
|
| 174 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 175 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 176 |
+
zbound=[-10.0, 10.0, 20.0]),
|
| 177 |
+
ignore_index=255,
|
| 178 |
+
only_vehicle=True,
|
| 179 |
+
filter_invisible=False),
|
| 180 |
+
dict(
|
| 181 |
+
type='ObjectRangeFilterTrack',
|
| 182 |
+
point_cloud_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]),
|
| 183 |
+
dict(
|
| 184 |
+
type='ObjectNameFilterTrack',
|
| 185 |
+
classes=[
|
| 186 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 187 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian',
|
| 188 |
+
'traffic_cone'
|
| 189 |
+
]),
|
| 190 |
+
dict(
|
| 191 |
+
type='NormalizeMultiviewImage',
|
| 192 |
+
mean=[103.53, 116.28, 123.675],
|
| 193 |
+
std=[1.0, 1.0, 1.0],
|
| 194 |
+
to_rgb=False),
|
| 195 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 196 |
+
dict(
|
| 197 |
+
type='DefaultFormatBundle3D',
|
| 198 |
+
class_names=[
|
| 199 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 200 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian',
|
| 201 |
+
'traffic_cone'
|
| 202 |
+
]),
|
| 203 |
+
dict(
|
| 204 |
+
type='CustomCollect3D',
|
| 205 |
+
keys=[
|
| 206 |
+
'gt_bboxes_3d', 'gt_labels_3d', 'gt_inds', 'img',
|
| 207 |
+
'timestamp', 'l2g_r_mat', 'l2g_t', 'gt_fut_traj',
|
| 208 |
+
'gt_fut_traj_mask', 'gt_past_traj', 'gt_past_traj_mask',
|
| 209 |
+
'gt_sdc_bbox', 'gt_sdc_label', 'gt_sdc_fut_traj',
|
| 210 |
+
'gt_sdc_fut_traj_mask', 'gt_lane_labels', 'gt_lane_bboxes',
|
| 211 |
+
'gt_lane_masks', 'gt_segmentation', 'gt_instance',
|
| 212 |
+
'gt_centerness', 'gt_offset', 'gt_flow',
|
| 213 |
+
'gt_backward_flow', 'gt_occ_has_invalid_frame',
|
| 214 |
+
'gt_occ_img_is_valid', 'gt_future_boxes',
|
| 215 |
+
'gt_future_labels', 'sdc_planning', 'sdc_planning_mask',
|
| 216 |
+
'command'
|
| 217 |
+
])
|
| 218 |
+
],
|
| 219 |
+
classes=[
|
| 220 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 221 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 222 |
+
],
|
| 223 |
+
modality=dict(
|
| 224 |
+
use_lidar=False,
|
| 225 |
+
use_camera=True,
|
| 226 |
+
use_radar=False,
|
| 227 |
+
use_map=False,
|
| 228 |
+
use_external=True),
|
| 229 |
+
test_mode=False,
|
| 230 |
+
box_type_3d='LiDAR',
|
| 231 |
+
file_client_args=dict(backend='disk'),
|
| 232 |
+
use_valid_flag=True,
|
| 233 |
+
patch_size=[102.4, 102.4],
|
| 234 |
+
canvas_size=(200, 200),
|
| 235 |
+
bev_size=(200, 200),
|
| 236 |
+
queue_length=3,
|
| 237 |
+
predict_steps=12,
|
| 238 |
+
past_steps=4,
|
| 239 |
+
fut_steps=4,
|
| 240 |
+
use_nonlinear_optimizer=True,
|
| 241 |
+
occ_receptive_field=3,
|
| 242 |
+
occ_n_future=6,
|
| 243 |
+
occ_filter_invalid_sample=False),
|
| 244 |
+
val=dict(
|
| 245 |
+
type='NuScenesE2EDataset',
|
| 246 |
+
data_root='data/nuscenes/',
|
| 247 |
+
ann_file='data/infos/nuscenes_infos_temporal_val.pkl',
|
| 248 |
+
pipeline=[
|
| 249 |
+
dict(
|
| 250 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 251 |
+
to_float32=True,
|
| 252 |
+
file_client_args=dict(backend='disk'),
|
| 253 |
+
img_root=''),
|
| 254 |
+
dict(
|
| 255 |
+
type='NormalizeMultiviewImage',
|
| 256 |
+
mean=[103.53, 116.28, 123.675],
|
| 257 |
+
std=[1.0, 1.0, 1.0],
|
| 258 |
+
to_rgb=False),
|
| 259 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 260 |
+
dict(
|
| 261 |
+
type='LoadAnnotations3D_E2E',
|
| 262 |
+
with_bbox_3d=False,
|
| 263 |
+
with_label_3d=False,
|
| 264 |
+
with_attr_label=False,
|
| 265 |
+
with_future_anns=True,
|
| 266 |
+
with_ins_inds_3d=False,
|
| 267 |
+
ins_inds_add_1=True),
|
| 268 |
+
dict(
|
| 269 |
+
type='GenerateOccFlowLabels',
|
| 270 |
+
grid_conf=dict(
|
| 271 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 272 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 273 |
+
zbound=[-10.0, 10.0, 20.0]),
|
| 274 |
+
ignore_index=255,
|
| 275 |
+
only_vehicle=True,
|
| 276 |
+
filter_invisible=False),
|
| 277 |
+
dict(
|
| 278 |
+
type='MultiScaleFlipAug3D',
|
| 279 |
+
img_scale=(1600, 900),
|
| 280 |
+
pts_scale_ratio=1,
|
| 281 |
+
flip=False,
|
| 282 |
+
transforms=[
|
| 283 |
+
dict(
|
| 284 |
+
type='DefaultFormatBundle3D',
|
| 285 |
+
class_names=[
|
| 286 |
+
'car', 'truck', 'construction_vehicle', 'bus',
|
| 287 |
+
'trailer', 'barrier', 'motorcycle', 'bicycle',
|
| 288 |
+
'pedestrian', 'traffic_cone'
|
| 289 |
+
],
|
| 290 |
+
with_label=False),
|
| 291 |
+
dict(
|
| 292 |
+
type='CustomCollect3D',
|
| 293 |
+
keys=[
|
| 294 |
+
'img', 'timestamp', 'l2g_r_mat', 'l2g_t',
|
| 295 |
+
'gt_lane_labels', 'gt_lane_bboxes',
|
| 296 |
+
'gt_lane_masks', 'gt_segmentation', 'gt_instance',
|
| 297 |
+
'gt_centerness', 'gt_offset', 'gt_flow',
|
| 298 |
+
'gt_backward_flow', 'gt_occ_has_invalid_frame',
|
| 299 |
+
'gt_occ_img_is_valid', 'sdc_planning',
|
| 300 |
+
'sdc_planning_mask', 'command'
|
| 301 |
+
])
|
| 302 |
+
])
|
| 303 |
+
],
|
| 304 |
+
classes=[
|
| 305 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 306 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 307 |
+
],
|
| 308 |
+
modality=dict(
|
| 309 |
+
use_lidar=False,
|
| 310 |
+
use_camera=True,
|
| 311 |
+
use_radar=False,
|
| 312 |
+
use_map=False,
|
| 313 |
+
use_external=True),
|
| 314 |
+
test_mode=True,
|
| 315 |
+
box_type_3d='LiDAR',
|
| 316 |
+
file_client_args=dict(backend='disk'),
|
| 317 |
+
patch_size=[102.4, 102.4],
|
| 318 |
+
canvas_size=(200, 200),
|
| 319 |
+
bev_size=(200, 200),
|
| 320 |
+
predict_steps=12,
|
| 321 |
+
past_steps=4,
|
| 322 |
+
fut_steps=4,
|
| 323 |
+
use_nonlinear_optimizer=True,
|
| 324 |
+
samples_per_gpu=1,
|
| 325 |
+
eval_mod=['det', 'map', 'track', 'motion'],
|
| 326 |
+
occ_receptive_field=3,
|
| 327 |
+
occ_n_future=6,
|
| 328 |
+
occ_filter_invalid_sample=False),
|
| 329 |
+
test=dict(
|
| 330 |
+
type='NuScenesE2EDataset',
|
| 331 |
+
data_root='data/nuscenes/',
|
| 332 |
+
ann_file='data/infos/nuscenes_infos_temporal_val.pkl',
|
| 333 |
+
pipeline=[
|
| 334 |
+
dict(
|
| 335 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 336 |
+
to_float32=True,
|
| 337 |
+
file_client_args=dict(backend='disk'),
|
| 338 |
+
img_root=''),
|
| 339 |
+
dict(
|
| 340 |
+
type='NormalizeMultiviewImage',
|
| 341 |
+
mean=[103.53, 116.28, 123.675],
|
| 342 |
+
std=[1.0, 1.0, 1.0],
|
| 343 |
+
to_rgb=False),
|
| 344 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 345 |
+
dict(
|
| 346 |
+
type='LoadAnnotations3D_E2E',
|
| 347 |
+
with_bbox_3d=False,
|
| 348 |
+
with_label_3d=False,
|
| 349 |
+
with_attr_label=False,
|
| 350 |
+
with_future_anns=True,
|
| 351 |
+
with_ins_inds_3d=False,
|
| 352 |
+
ins_inds_add_1=True),
|
| 353 |
+
dict(
|
| 354 |
+
type='GenerateOccFlowLabels',
|
| 355 |
+
grid_conf=dict(
|
| 356 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 357 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 358 |
+
zbound=[-10.0, 10.0, 20.0]),
|
| 359 |
+
ignore_index=255,
|
| 360 |
+
only_vehicle=True,
|
| 361 |
+
filter_invisible=False),
|
| 362 |
+
dict(
|
| 363 |
+
type='MultiScaleFlipAug3D',
|
| 364 |
+
img_scale=(1600, 900),
|
| 365 |
+
pts_scale_ratio=1,
|
| 366 |
+
flip=False,
|
| 367 |
+
transforms=[
|
| 368 |
+
dict(
|
| 369 |
+
type='DefaultFormatBundle3D',
|
| 370 |
+
class_names=[
|
| 371 |
+
'car', 'truck', 'construction_vehicle', 'bus',
|
| 372 |
+
'trailer', 'barrier', 'motorcycle', 'bicycle',
|
| 373 |
+
'pedestrian', 'traffic_cone'
|
| 374 |
+
],
|
| 375 |
+
with_label=False),
|
| 376 |
+
dict(
|
| 377 |
+
type='CustomCollect3D',
|
| 378 |
+
keys=[
|
| 379 |
+
'img', 'timestamp', 'l2g_r_mat', 'l2g_t',
|
| 380 |
+
'gt_lane_labels', 'gt_lane_bboxes',
|
| 381 |
+
'gt_lane_masks', 'gt_segmentation', 'gt_instance',
|
| 382 |
+
'gt_centerness', 'gt_offset', 'gt_flow',
|
| 383 |
+
'gt_backward_flow', 'gt_occ_has_invalid_frame',
|
| 384 |
+
'gt_occ_img_is_valid', 'sdc_planning',
|
| 385 |
+
'sdc_planning_mask', 'command'
|
| 386 |
+
])
|
| 387 |
+
])
|
| 388 |
+
],
|
| 389 |
+
classes=[
|
| 390 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 391 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 392 |
+
],
|
| 393 |
+
modality=dict(
|
| 394 |
+
use_lidar=False,
|
| 395 |
+
use_camera=True,
|
| 396 |
+
use_radar=False,
|
| 397 |
+
use_map=False,
|
| 398 |
+
use_external=True),
|
| 399 |
+
test_mode=True,
|
| 400 |
+
box_type_3d='LiDAR',
|
| 401 |
+
file_client_args=dict(backend='disk'),
|
| 402 |
+
patch_size=[102.4, 102.4],
|
| 403 |
+
canvas_size=(200, 200),
|
| 404 |
+
bev_size=(200, 200),
|
| 405 |
+
predict_steps=12,
|
| 406 |
+
past_steps=4,
|
| 407 |
+
fut_steps=4,
|
| 408 |
+
occ_n_future=6,
|
| 409 |
+
use_nonlinear_optimizer=True,
|
| 410 |
+
eval_mod=['det', 'map', 'track', 'motion']),
|
| 411 |
+
shuffler_sampler=dict(type='DistributedGroupSampler'),
|
| 412 |
+
nonshuffler_sampler=dict(type='DistributedSampler'))
|
| 413 |
+
evaluation = dict(
|
| 414 |
+
interval=20,
|
| 415 |
+
pipeline=[
|
| 416 |
+
dict(
|
| 417 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 418 |
+
to_float32=True,
|
| 419 |
+
file_client_args=dict(backend='disk'),
|
| 420 |
+
img_root=''),
|
| 421 |
+
dict(
|
| 422 |
+
type='NormalizeMultiviewImage',
|
| 423 |
+
mean=[103.53, 116.28, 123.675],
|
| 424 |
+
std=[1.0, 1.0, 1.0],
|
| 425 |
+
to_rgb=False),
|
| 426 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 427 |
+
dict(
|
| 428 |
+
type='LoadAnnotations3D_E2E',
|
| 429 |
+
with_bbox_3d=False,
|
| 430 |
+
with_label_3d=False,
|
| 431 |
+
with_attr_label=False,
|
| 432 |
+
with_future_anns=True,
|
| 433 |
+
with_ins_inds_3d=False,
|
| 434 |
+
ins_inds_add_1=True),
|
| 435 |
+
dict(
|
| 436 |
+
type='GenerateOccFlowLabels',
|
| 437 |
+
grid_conf=dict(
|
| 438 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 439 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 440 |
+
zbound=[-10.0, 10.0, 20.0]),
|
| 441 |
+
ignore_index=255,
|
| 442 |
+
only_vehicle=True,
|
| 443 |
+
filter_invisible=False),
|
| 444 |
+
dict(
|
| 445 |
+
type='MultiScaleFlipAug3D',
|
| 446 |
+
img_scale=(1600, 900),
|
| 447 |
+
pts_scale_ratio=1,
|
| 448 |
+
flip=False,
|
| 449 |
+
transforms=[
|
| 450 |
+
dict(
|
| 451 |
+
type='DefaultFormatBundle3D',
|
| 452 |
+
class_names=[
|
| 453 |
+
'car', 'truck', 'construction_vehicle', 'bus',
|
| 454 |
+
'trailer', 'barrier', 'motorcycle', 'bicycle',
|
| 455 |
+
'pedestrian', 'traffic_cone'
|
| 456 |
+
],
|
| 457 |
+
with_label=False),
|
| 458 |
+
dict(
|
| 459 |
+
type='CustomCollect3D',
|
| 460 |
+
keys=[
|
| 461 |
+
'img', 'timestamp', 'l2g_r_mat', 'l2g_t',
|
| 462 |
+
'gt_lane_labels', 'gt_lane_bboxes', 'gt_lane_masks',
|
| 463 |
+
'gt_segmentation', 'gt_instance', 'gt_centerness',
|
| 464 |
+
'gt_offset', 'gt_flow', 'gt_backward_flow',
|
| 465 |
+
'gt_occ_has_invalid_frame', 'gt_occ_img_is_valid',
|
| 466 |
+
'sdc_planning', 'sdc_planning_mask', 'command'
|
| 467 |
+
])
|
| 468 |
+
])
|
| 469 |
+
],
|
| 470 |
+
planning_evaluation_strategy='uniad')
|
| 471 |
+
checkpoint_config = dict(interval=4)
|
| 472 |
+
log_config = dict(
|
| 473 |
+
interval=10,
|
| 474 |
+
hooks=[dict(type='TextLoggerHook'),
|
| 475 |
+
dict(type='TensorboardLoggerHook')])
|
| 476 |
+
dist_params = dict(backend='nccl')
|
| 477 |
+
log_level = 'INFO'
|
| 478 |
+
work_dir = 'projects/work_dirs/stage2_e2e/base_e2e/'
|
| 479 |
+
load_from = 'ckpts/uniad_base_track_map.pth'
|
| 480 |
+
resume_from = None
|
| 481 |
+
workflow = [('train', 1)]
|
| 482 |
+
plugin = True
|
| 483 |
+
plugin_dir = 'projects/mmdet3d_plugin/'
|
| 484 |
+
voxel_size = [0.2, 0.2, 8]
|
| 485 |
+
patch_size = [102.4, 102.4]
|
| 486 |
+
img_norm_cfg = dict(
|
| 487 |
+
mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
|
| 488 |
+
vehicle_id_list = [0, 1, 2, 3, 4, 6, 7]
|
| 489 |
+
group_id_list = [[0, 1, 2, 3, 4], [6, 7], [8], [5, 9]]
|
| 490 |
+
_dim_ = 256
|
| 491 |
+
_pos_dim_ = 128
|
| 492 |
+
_ffn_dim_ = 512
|
| 493 |
+
_num_levels_ = 4
|
| 494 |
+
bev_h_ = 200
|
| 495 |
+
bev_w_ = 200
|
| 496 |
+
_feed_dim_ = 512
|
| 497 |
+
_dim_half_ = 128
|
| 498 |
+
canvas_size = (200, 200)
|
| 499 |
+
queue_length = 3
|
| 500 |
+
predict_steps = 12
|
| 501 |
+
predict_modes = 6
|
| 502 |
+
fut_steps = 4
|
| 503 |
+
past_steps = 4
|
| 504 |
+
use_nonlinear_optimizer = True
|
| 505 |
+
occ_n_future = 4
|
| 506 |
+
occ_n_future_plan = 6
|
| 507 |
+
occ_n_future_max = 6
|
| 508 |
+
planning_steps = 6
|
| 509 |
+
use_col_optim = True
|
| 510 |
+
planning_evaluation_strategy = 'uniad'
|
| 511 |
+
occflow_grid_conf = dict(
|
| 512 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 513 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 514 |
+
zbound=[-10.0, 10.0, 20.0])
|
| 515 |
+
train_gt_iou_threshold = 0.3
|
| 516 |
+
model = dict(
|
| 517 |
+
type='UniAD',
|
| 518 |
+
gt_iou_threshold=0.3,
|
| 519 |
+
queue_length=3,
|
| 520 |
+
use_grid_mask=True,
|
| 521 |
+
video_test_mode=True,
|
| 522 |
+
num_query=900,
|
| 523 |
+
num_classes=10,
|
| 524 |
+
vehicle_id_list=[0, 1, 2, 3, 4, 6, 7],
|
| 525 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 526 |
+
img_backbone=dict(
|
| 527 |
+
type='ResNet',
|
| 528 |
+
depth=101,
|
| 529 |
+
num_stages=4,
|
| 530 |
+
out_indices=(1, 2, 3),
|
| 531 |
+
frozen_stages=4,
|
| 532 |
+
norm_cfg=dict(type='BN2d', requires_grad=False),
|
| 533 |
+
norm_eval=True,
|
| 534 |
+
style='caffe',
|
| 535 |
+
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
|
| 536 |
+
stage_with_dcn=(False, False, True, True)),
|
| 537 |
+
img_neck=dict(
|
| 538 |
+
type='FPN',
|
| 539 |
+
in_channels=[512, 1024, 2048],
|
| 540 |
+
out_channels=256,
|
| 541 |
+
start_level=0,
|
| 542 |
+
add_extra_convs='on_output',
|
| 543 |
+
num_outs=4,
|
| 544 |
+
relu_before_extra_convs=True),
|
| 545 |
+
freeze_img_backbone=True,
|
| 546 |
+
freeze_img_neck=True,
|
| 547 |
+
freeze_bn=True,
|
| 548 |
+
freeze_bev_encoder=True,
|
| 549 |
+
score_thresh=0.4,
|
| 550 |
+
filter_score_thresh=0.35,
|
| 551 |
+
qim_args=dict(
|
| 552 |
+
qim_type='QIMBase',
|
| 553 |
+
merger_dropout=0,
|
| 554 |
+
update_query_pos=True,
|
| 555 |
+
fp_ratio=0.3,
|
| 556 |
+
random_drop=0.1),
|
| 557 |
+
mem_args=dict(
|
| 558 |
+
memory_bank_type='MemoryBank',
|
| 559 |
+
memory_bank_score_thresh=0.0,
|
| 560 |
+
memory_bank_len=4),
|
| 561 |
+
loss_cfg=dict(
|
| 562 |
+
type='ClipMatcher',
|
| 563 |
+
num_classes=10,
|
| 564 |
+
weight_dict=None,
|
| 565 |
+
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2],
|
| 566 |
+
assigner=dict(
|
| 567 |
+
type='HungarianAssigner3DTrack',
|
| 568 |
+
cls_cost=dict(type='FocalLossCost', weight=2.0),
|
| 569 |
+
reg_cost=dict(type='BBox3DL1Cost', weight=0.25),
|
| 570 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]),
|
| 571 |
+
loss_cls=dict(
|
| 572 |
+
type='FocalLoss',
|
| 573 |
+
use_sigmoid=True,
|
| 574 |
+
gamma=2.0,
|
| 575 |
+
alpha=0.25,
|
| 576 |
+
loss_weight=2.0),
|
| 577 |
+
loss_bbox=dict(type='L1Loss', loss_weight=0.25)),
|
| 578 |
+
pts_bbox_head=dict(
|
| 579 |
+
type='BEVFormerTrackHead',
|
| 580 |
+
bev_h=200,
|
| 581 |
+
bev_w=200,
|
| 582 |
+
num_query=900,
|
| 583 |
+
num_classes=10,
|
| 584 |
+
in_channels=256,
|
| 585 |
+
sync_cls_avg_factor=True,
|
| 586 |
+
with_box_refine=True,
|
| 587 |
+
as_two_stage=False,
|
| 588 |
+
past_steps=4,
|
| 589 |
+
fut_steps=4,
|
| 590 |
+
transformer=dict(
|
| 591 |
+
type='PerceptionTransformer',
|
| 592 |
+
rotate_prev_bev=True,
|
| 593 |
+
use_shift=True,
|
| 594 |
+
use_can_bus=True,
|
| 595 |
+
embed_dims=256,
|
| 596 |
+
encoder=dict(
|
| 597 |
+
type='BEVFormerEncoder',
|
| 598 |
+
num_layers=6,
|
| 599 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 600 |
+
num_points_in_pillar=4,
|
| 601 |
+
return_intermediate=False,
|
| 602 |
+
transformerlayers=dict(
|
| 603 |
+
type='BEVFormerLayer',
|
| 604 |
+
attn_cfgs=[
|
| 605 |
+
dict(
|
| 606 |
+
type='TemporalSelfAttention',
|
| 607 |
+
embed_dims=256,
|
| 608 |
+
num_levels=1),
|
| 609 |
+
dict(
|
| 610 |
+
type='SpatialCrossAttention',
|
| 611 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 612 |
+
deformable_attention=dict(
|
| 613 |
+
type='MSDeformableAttention3D',
|
| 614 |
+
embed_dims=256,
|
| 615 |
+
num_points=8,
|
| 616 |
+
num_levels=4),
|
| 617 |
+
embed_dims=256)
|
| 618 |
+
],
|
| 619 |
+
feedforward_channels=512,
|
| 620 |
+
ffn_dropout=0.1,
|
| 621 |
+
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
| 622 |
+
'ffn', 'norm'))),
|
| 623 |
+
decoder=dict(
|
| 624 |
+
type='DetectionTransformerDecoder',
|
| 625 |
+
num_layers=6,
|
| 626 |
+
return_intermediate=True,
|
| 627 |
+
transformerlayers=dict(
|
| 628 |
+
type='DetrTransformerDecoderLayer',
|
| 629 |
+
attn_cfgs=[
|
| 630 |
+
dict(
|
| 631 |
+
type='MultiheadAttention',
|
| 632 |
+
embed_dims=256,
|
| 633 |
+
num_heads=8,
|
| 634 |
+
dropout=0.1),
|
| 635 |
+
dict(
|
| 636 |
+
type='CustomMSDeformableAttention',
|
| 637 |
+
embed_dims=256,
|
| 638 |
+
num_levels=1)
|
| 639 |
+
],
|
| 640 |
+
feedforward_channels=512,
|
| 641 |
+
ffn_dropout=0.1,
|
| 642 |
+
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
| 643 |
+
'ffn', 'norm')))),
|
| 644 |
+
bbox_coder=dict(
|
| 645 |
+
type='NMSFreeCoder',
|
| 646 |
+
post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
|
| 647 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 648 |
+
max_num=300,
|
| 649 |
+
voxel_size=[0.2, 0.2, 8],
|
| 650 |
+
num_classes=10),
|
| 651 |
+
positional_encoding=dict(
|
| 652 |
+
type='LearnedPositionalEncoding',
|
| 653 |
+
num_feats=128,
|
| 654 |
+
row_num_embed=200,
|
| 655 |
+
col_num_embed=200),
|
| 656 |
+
loss_cls=dict(
|
| 657 |
+
type='FocalLoss',
|
| 658 |
+
use_sigmoid=True,
|
| 659 |
+
gamma=2.0,
|
| 660 |
+
alpha=0.25,
|
| 661 |
+
loss_weight=2.0),
|
| 662 |
+
loss_bbox=dict(type='L1Loss', loss_weight=0.25),
|
| 663 |
+
loss_iou=dict(type='GIoULoss', loss_weight=0.0)),
|
| 664 |
+
seg_head=dict(
|
| 665 |
+
type='PansegformerHead',
|
| 666 |
+
bev_h=200,
|
| 667 |
+
bev_w=200,
|
| 668 |
+
canvas_size=(200, 200),
|
| 669 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 670 |
+
num_query=300,
|
| 671 |
+
num_classes=4,
|
| 672 |
+
num_things_classes=3,
|
| 673 |
+
num_stuff_classes=1,
|
| 674 |
+
in_channels=2048,
|
| 675 |
+
sync_cls_avg_factor=True,
|
| 676 |
+
as_two_stage=False,
|
| 677 |
+
with_box_refine=True,
|
| 678 |
+
transformer=dict(
|
| 679 |
+
type='SegDeformableTransformer',
|
| 680 |
+
encoder=dict(
|
| 681 |
+
type='DetrTransformerEncoder',
|
| 682 |
+
num_layers=6,
|
| 683 |
+
transformerlayers=dict(
|
| 684 |
+
type='BaseTransformerLayer',
|
| 685 |
+
attn_cfgs=dict(
|
| 686 |
+
type='MultiScaleDeformableAttention',
|
| 687 |
+
embed_dims=256,
|
| 688 |
+
num_levels=4),
|
| 689 |
+
feedforward_channels=512,
|
| 690 |
+
ffn_dropout=0.1,
|
| 691 |
+
operation_order=('self_attn', 'norm', 'ffn', 'norm'))),
|
| 692 |
+
decoder=dict(
|
| 693 |
+
type='DeformableDetrTransformerDecoder',
|
| 694 |
+
num_layers=6,
|
| 695 |
+
return_intermediate=True,
|
| 696 |
+
transformerlayers=dict(
|
| 697 |
+
type='DetrTransformerDecoderLayer',
|
| 698 |
+
attn_cfgs=[
|
| 699 |
+
dict(
|
| 700 |
+
type='MultiheadAttention',
|
| 701 |
+
embed_dims=256,
|
| 702 |
+
num_heads=8,
|
| 703 |
+
dropout=0.1),
|
| 704 |
+
dict(
|
| 705 |
+
type='MultiScaleDeformableAttention',
|
| 706 |
+
embed_dims=256,
|
| 707 |
+
num_levels=4)
|
| 708 |
+
],
|
| 709 |
+
feedforward_channels=512,
|
| 710 |
+
ffn_dropout=0.1,
|
| 711 |
+
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
| 712 |
+
'ffn', 'norm')))),
|
| 713 |
+
positional_encoding=dict(
|
| 714 |
+
type='SinePositionalEncoding',
|
| 715 |
+
num_feats=128,
|
| 716 |
+
normalize=True,
|
| 717 |
+
offset=-0.5),
|
| 718 |
+
loss_cls=dict(
|
| 719 |
+
type='FocalLoss',
|
| 720 |
+
use_sigmoid=True,
|
| 721 |
+
gamma=2.0,
|
| 722 |
+
alpha=0.25,
|
| 723 |
+
loss_weight=2.0),
|
| 724 |
+
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
|
| 725 |
+
loss_iou=dict(type='GIoULoss', loss_weight=2.0),
|
| 726 |
+
loss_mask=dict(type='DiceLoss', loss_weight=2.0),
|
| 727 |
+
thing_transformer_head=dict(
|
| 728 |
+
type='SegMaskHead', d_model=256, nhead=8, num_decoder_layers=4),
|
| 729 |
+
stuff_transformer_head=dict(
|
| 730 |
+
type='SegMaskHead',
|
| 731 |
+
d_model=256,
|
| 732 |
+
nhead=8,
|
| 733 |
+
num_decoder_layers=6,
|
| 734 |
+
self_attn=True),
|
| 735 |
+
train_cfg=dict(
|
| 736 |
+
assigner=dict(
|
| 737 |
+
type='HungarianAssigner',
|
| 738 |
+
cls_cost=dict(type='FocalLossCost', weight=2.0),
|
| 739 |
+
reg_cost=dict(
|
| 740 |
+
type='BBoxL1Cost', weight=5.0, box_format='xywh'),
|
| 741 |
+
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0)),
|
| 742 |
+
assigner_with_mask=dict(
|
| 743 |
+
type='HungarianAssigner_multi_info',
|
| 744 |
+
cls_cost=dict(type='FocalLossCost', weight=2.0),
|
| 745 |
+
reg_cost=dict(
|
| 746 |
+
type='BBoxL1Cost', weight=5.0, box_format='xywh'),
|
| 747 |
+
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0),
|
| 748 |
+
mask_cost=dict(type='DiceCost', weight=2.0)),
|
| 749 |
+
sampler=dict(type='PseudoSampler'),
|
| 750 |
+
sampler_with_mask=dict(type='PseudoSampler_segformer'))),
|
| 751 |
+
occ_head=dict(
|
| 752 |
+
type='OccHead',
|
| 753 |
+
grid_conf=dict(
|
| 754 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 755 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 756 |
+
zbound=[-10.0, 10.0, 20.0]),
|
| 757 |
+
ignore_index=255,
|
| 758 |
+
bev_proj_dim=256,
|
| 759 |
+
bev_proj_nlayers=4,
|
| 760 |
+
attn_mask_thresh=0.3,
|
| 761 |
+
transformer_decoder=dict(
|
| 762 |
+
type='DetrTransformerDecoder',
|
| 763 |
+
return_intermediate=True,
|
| 764 |
+
num_layers=5,
|
| 765 |
+
transformerlayers=dict(
|
| 766 |
+
type='DetrTransformerDecoderLayer',
|
| 767 |
+
attn_cfgs=dict(
|
| 768 |
+
type='MultiheadAttention',
|
| 769 |
+
embed_dims=256,
|
| 770 |
+
num_heads=8,
|
| 771 |
+
attn_drop=0.0,
|
| 772 |
+
proj_drop=0.0,
|
| 773 |
+
dropout_layer=None,
|
| 774 |
+
batch_first=False),
|
| 775 |
+
ffn_cfgs=dict(
|
| 776 |
+
embed_dims=256,
|
| 777 |
+
feedforward_channels=2048,
|
| 778 |
+
num_fcs=2,
|
| 779 |
+
act_cfg=dict(type='ReLU', inplace=True),
|
| 780 |
+
ffn_drop=0.0,
|
| 781 |
+
dropout_layer=None,
|
| 782 |
+
add_identity=True),
|
| 783 |
+
feedforward_channels=2048,
|
| 784 |
+
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
| 785 |
+
'ffn', 'norm')),
|
| 786 |
+
init_cfg=None),
|
| 787 |
+
query_dim=256,
|
| 788 |
+
query_mlp_layers=3,
|
| 789 |
+
aux_loss_weight=1.0,
|
| 790 |
+
loss_mask=dict(
|
| 791 |
+
type='FieryBinarySegmentationLoss',
|
| 792 |
+
use_top_k=True,
|
| 793 |
+
top_k_ratio=0.25,
|
| 794 |
+
future_discount=0.95,
|
| 795 |
+
loss_weight=5.0,
|
| 796 |
+
ignore_index=255),
|
| 797 |
+
loss_dice=dict(
|
| 798 |
+
type='DiceLossWithMasks',
|
| 799 |
+
use_sigmoid=True,
|
| 800 |
+
activate=True,
|
| 801 |
+
reduction='mean',
|
| 802 |
+
naive_dice=True,
|
| 803 |
+
eps=1.0,
|
| 804 |
+
ignore_index=255,
|
| 805 |
+
loss_weight=1.0),
|
| 806 |
+
pan_eval=True,
|
| 807 |
+
test_seg_thresh=0.1,
|
| 808 |
+
test_with_track_score=True),
|
| 809 |
+
motion_head=dict(
|
| 810 |
+
type='MotionHead',
|
| 811 |
+
bev_h=200,
|
| 812 |
+
bev_w=200,
|
| 813 |
+
num_query=300,
|
| 814 |
+
num_classes=10,
|
| 815 |
+
predict_steps=12,
|
| 816 |
+
predict_modes=6,
|
| 817 |
+
embed_dims=256,
|
| 818 |
+
loss_traj=dict(
|
| 819 |
+
type='TrajLoss',
|
| 820 |
+
use_variance=True,
|
| 821 |
+
cls_loss_weight=0.5,
|
| 822 |
+
nll_loss_weight=0.5,
|
| 823 |
+
loss_weight_minade=0.0,
|
| 824 |
+
loss_weight_minfde=0.25),
|
| 825 |
+
num_cls_fcs=3,
|
| 826 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 827 |
+
group_id_list=[[0, 1, 2, 3, 4], [6, 7], [8], [5, 9]],
|
| 828 |
+
num_anchor=6,
|
| 829 |
+
use_nonlinear_optimizer=True,
|
| 830 |
+
anchor_info_path='data/others/motion_anchor_infos_mode6_new.pkl',
|
| 831 |
+
transformerlayers=dict(
|
| 832 |
+
type='MotionTransformerDecoder',
|
| 833 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 834 |
+
embed_dims=256,
|
| 835 |
+
num_layers=3,
|
| 836 |
+
transformerlayers=dict(
|
| 837 |
+
type='MotionTransformerAttentionLayer',
|
| 838 |
+
batch_first=True,
|
| 839 |
+
attn_cfgs=[
|
| 840 |
+
dict(
|
| 841 |
+
type='MotionDeformableAttention',
|
| 842 |
+
num_steps=12,
|
| 843 |
+
embed_dims=256,
|
| 844 |
+
num_levels=1,
|
| 845 |
+
num_heads=8,
|
| 846 |
+
num_points=4,
|
| 847 |
+
sample_index=-1)
|
| 848 |
+
],
|
| 849 |
+
feedforward_channels=512,
|
| 850 |
+
ffn_dropout=0.1,
|
| 851 |
+
operation_order=('cross_attn', 'norm', 'ffn', 'norm')))),
|
| 852 |
+
planning_head=dict(
|
| 853 |
+
type='PlanningHeadSingleMode',
|
| 854 |
+
embed_dims=256,
|
| 855 |
+
planning_steps=6,
|
| 856 |
+
loss_planning=dict(type='PlanningLoss'),
|
| 857 |
+
loss_collision=[
|
| 858 |
+
dict(type='CollisionLoss', delta=0.0, weight=2.5),
|
| 859 |
+
dict(type='CollisionLoss', delta=0.5, weight=1.0),
|
| 860 |
+
dict(type='CollisionLoss', delta=1.0, weight=0.25)
|
| 861 |
+
],
|
| 862 |
+
use_col_optim=True,
|
| 863 |
+
planning_eval=True,
|
| 864 |
+
with_adapter=True),
|
| 865 |
+
train_cfg=dict(
|
| 866 |
+
pts=dict(
|
| 867 |
+
grid_size=[512, 512, 1],
|
| 868 |
+
voxel_size=[0.2, 0.2, 8],
|
| 869 |
+
point_cloud_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 870 |
+
out_size_factor=4,
|
| 871 |
+
assigner=dict(
|
| 872 |
+
type='HungarianAssigner3D',
|
| 873 |
+
cls_cost=dict(type='FocalLossCost', weight=2.0),
|
| 874 |
+
reg_cost=dict(type='BBox3DL1Cost', weight=0.25),
|
| 875 |
+
iou_cost=dict(type='IoUCost', weight=0.0),
|
| 876 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]))))
|
| 877 |
+
info_root = 'data/infos/'
|
| 878 |
+
ann_file_train = 'data/infos/nuscenes_infos_temporal_train.pkl'
|
| 879 |
+
ann_file_val = 'data/infos/nuscenes_infos_temporal_val.pkl'
|
| 880 |
+
ann_file_test = 'data/infos/nuscenes_infos_temporal_val.pkl'
|
| 881 |
+
optimizer = dict(
|
| 882 |
+
type='AdamW',
|
| 883 |
+
lr=0.0002,
|
| 884 |
+
paramwise_cfg=dict(custom_keys=dict(img_backbone=dict(lr_mult=0.1))),
|
| 885 |
+
weight_decay=0.01)
|
| 886 |
+
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
|
| 887 |
+
lr_config = dict(
|
| 888 |
+
policy='CosineAnnealing',
|
| 889 |
+
warmup='linear',
|
| 890 |
+
warmup_iters=500,
|
| 891 |
+
warmup_ratio=0.3333333333333333,
|
| 892 |
+
min_lr_ratio=0.001)
|
| 893 |
+
total_epochs = 20
|
| 894 |
+
runner = dict(type='EpochBasedRunner', max_epochs=20)
|
| 895 |
+
find_unused_parameters = True
|
| 896 |
+
logger_name = 'mmdet'
|
| 897 |
+
gpu_ids = range(0, 16)
|
config/base_track_map.py
ADDED
|
@@ -0,0 +1,780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
|
| 2 |
+
class_names = [
|
| 3 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
|
| 4 |
+
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 5 |
+
]
|
| 6 |
+
dataset_type = 'NuScenesE2EDataset'
|
| 7 |
+
data_root = 'data/nuscenes/'
|
| 8 |
+
input_modality = dict(
|
| 9 |
+
use_lidar=False,
|
| 10 |
+
use_camera=True,
|
| 11 |
+
use_radar=False,
|
| 12 |
+
use_map=False,
|
| 13 |
+
use_external=True)
|
| 14 |
+
file_client_args = dict(backend='disk')
|
| 15 |
+
train_pipeline = [
|
| 16 |
+
dict(
|
| 17 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 18 |
+
to_float32=True,
|
| 19 |
+
file_client_args=dict(backend='disk'),
|
| 20 |
+
img_root=''),
|
| 21 |
+
dict(type='PhotoMetricDistortionMultiViewImage'),
|
| 22 |
+
dict(
|
| 23 |
+
type='LoadAnnotations3D_E2E',
|
| 24 |
+
with_bbox_3d=True,
|
| 25 |
+
with_label_3d=True,
|
| 26 |
+
with_attr_label=False,
|
| 27 |
+
with_future_anns=True,
|
| 28 |
+
with_ins_inds_3d=True,
|
| 29 |
+
ins_inds_add_1=True),
|
| 30 |
+
dict(
|
| 31 |
+
type='GenerateOccFlowLabels',
|
| 32 |
+
grid_conf=dict(
|
| 33 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 34 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 35 |
+
zbound=[-10.0, 10.0, 20.0]),
|
| 36 |
+
ignore_index=255,
|
| 37 |
+
only_vehicle=True,
|
| 38 |
+
filter_invisible=False),
|
| 39 |
+
dict(
|
| 40 |
+
type='ObjectRangeFilterTrack',
|
| 41 |
+
point_cloud_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]),
|
| 42 |
+
dict(
|
| 43 |
+
type='ObjectNameFilterTrack',
|
| 44 |
+
classes=[
|
| 45 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 46 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 47 |
+
]),
|
| 48 |
+
dict(
|
| 49 |
+
type='NormalizeMultiviewImage',
|
| 50 |
+
mean=[103.53, 116.28, 123.675],
|
| 51 |
+
std=[1.0, 1.0, 1.0],
|
| 52 |
+
to_rgb=False),
|
| 53 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 54 |
+
dict(
|
| 55 |
+
type='DefaultFormatBundle3D',
|
| 56 |
+
class_names=[
|
| 57 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 58 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 59 |
+
]),
|
| 60 |
+
dict(
|
| 61 |
+
type='CustomCollect3D',
|
| 62 |
+
keys=[
|
| 63 |
+
'gt_bboxes_3d', 'gt_labels_3d', 'gt_inds', 'img', 'timestamp',
|
| 64 |
+
'l2g_r_mat', 'l2g_t', 'gt_fut_traj', 'gt_fut_traj_mask',
|
| 65 |
+
'gt_past_traj', 'gt_past_traj_mask', 'gt_sdc_bbox', 'gt_sdc_label',
|
| 66 |
+
'gt_sdc_fut_traj', 'gt_sdc_fut_traj_mask', 'gt_lane_labels',
|
| 67 |
+
'gt_lane_bboxes', 'gt_lane_masks', 'gt_segmentation',
|
| 68 |
+
'gt_instance', 'gt_centerness', 'gt_offset', 'gt_flow',
|
| 69 |
+
'gt_backward_flow', 'gt_occ_has_invalid_frame',
|
| 70 |
+
'gt_occ_img_is_valid', 'gt_future_boxes', 'gt_future_labels',
|
| 71 |
+
'sdc_planning', 'sdc_planning_mask', 'command'
|
| 72 |
+
])
|
| 73 |
+
]
|
| 74 |
+
test_pipeline = [
|
| 75 |
+
dict(
|
| 76 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 77 |
+
to_float32=True,
|
| 78 |
+
file_client_args=dict(backend='disk'),
|
| 79 |
+
img_root=''),
|
| 80 |
+
dict(
|
| 81 |
+
type='NormalizeMultiviewImage',
|
| 82 |
+
mean=[103.53, 116.28, 123.675],
|
| 83 |
+
std=[1.0, 1.0, 1.0],
|
| 84 |
+
to_rgb=False),
|
| 85 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 86 |
+
dict(
|
| 87 |
+
type='LoadAnnotations3D_E2E',
|
| 88 |
+
with_bbox_3d=False,
|
| 89 |
+
with_label_3d=False,
|
| 90 |
+
with_attr_label=False,
|
| 91 |
+
with_future_anns=True,
|
| 92 |
+
with_ins_inds_3d=False,
|
| 93 |
+
ins_inds_add_1=True),
|
| 94 |
+
dict(
|
| 95 |
+
type='GenerateOccFlowLabels',
|
| 96 |
+
grid_conf=dict(
|
| 97 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 98 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 99 |
+
zbound=[-10.0, 10.0, 20.0]),
|
| 100 |
+
ignore_index=255,
|
| 101 |
+
only_vehicle=True,
|
| 102 |
+
filter_invisible=False),
|
| 103 |
+
dict(
|
| 104 |
+
type='MultiScaleFlipAug3D',
|
| 105 |
+
img_scale=(1600, 900),
|
| 106 |
+
pts_scale_ratio=1,
|
| 107 |
+
flip=False,
|
| 108 |
+
transforms=[
|
| 109 |
+
dict(
|
| 110 |
+
type='DefaultFormatBundle3D',
|
| 111 |
+
class_names=[
|
| 112 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 113 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian',
|
| 114 |
+
'traffic_cone'
|
| 115 |
+
],
|
| 116 |
+
with_label=False),
|
| 117 |
+
dict(
|
| 118 |
+
type='CustomCollect3D',
|
| 119 |
+
keys=[
|
| 120 |
+
'img', 'timestamp', 'l2g_r_mat', 'l2g_t', 'gt_lane_labels',
|
| 121 |
+
'gt_lane_bboxes', 'gt_lane_masks', 'gt_segmentation',
|
| 122 |
+
'gt_instance', 'gt_centerness', 'gt_offset', 'gt_flow',
|
| 123 |
+
'gt_backward_flow', 'gt_occ_has_invalid_frame',
|
| 124 |
+
'gt_occ_img_is_valid', 'sdc_planning', 'sdc_planning_mask',
|
| 125 |
+
'command'
|
| 126 |
+
])
|
| 127 |
+
])
|
| 128 |
+
]
|
| 129 |
+
eval_pipeline = [
|
| 130 |
+
dict(
|
| 131 |
+
type='LoadPointsFromFile',
|
| 132 |
+
coord_type='LIDAR',
|
| 133 |
+
load_dim=5,
|
| 134 |
+
use_dim=5,
|
| 135 |
+
file_client_args=dict(backend='disk')),
|
| 136 |
+
dict(
|
| 137 |
+
type='LoadPointsFromMultiSweeps',
|
| 138 |
+
sweeps_num=10,
|
| 139 |
+
file_client_args=dict(backend='disk')),
|
| 140 |
+
dict(
|
| 141 |
+
type='DefaultFormatBundle3D',
|
| 142 |
+
class_names=[
|
| 143 |
+
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
|
| 144 |
+
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
|
| 145 |
+
],
|
| 146 |
+
with_label=False),
|
| 147 |
+
dict(type='Collect3D', keys=['points'])
|
| 148 |
+
]
|
| 149 |
+
data = dict(
|
| 150 |
+
samples_per_gpu=1,
|
| 151 |
+
workers_per_gpu=8,
|
| 152 |
+
train=dict(
|
| 153 |
+
type='NuScenesE2EDataset',
|
| 154 |
+
data_root='data/nuscenes/',
|
| 155 |
+
ann_file='data/infos/nuscenes_infos_temporal_train.pkl',
|
| 156 |
+
pipeline=[
|
| 157 |
+
dict(
|
| 158 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 159 |
+
to_float32=True,
|
| 160 |
+
file_client_args=dict(backend='disk'),
|
| 161 |
+
img_root=''),
|
| 162 |
+
dict(type='PhotoMetricDistortionMultiViewImage'),
|
| 163 |
+
dict(
|
| 164 |
+
type='LoadAnnotations3D_E2E',
|
| 165 |
+
with_bbox_3d=True,
|
| 166 |
+
with_label_3d=True,
|
| 167 |
+
with_attr_label=False,
|
| 168 |
+
with_future_anns=True,
|
| 169 |
+
with_ins_inds_3d=True,
|
| 170 |
+
ins_inds_add_1=True),
|
| 171 |
+
dict(
|
| 172 |
+
type='GenerateOccFlowLabels',
|
| 173 |
+
grid_conf=dict(
|
| 174 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 175 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 176 |
+
zbound=[-10.0, 10.0, 20.0]),
|
| 177 |
+
ignore_index=255,
|
| 178 |
+
only_vehicle=True,
|
| 179 |
+
filter_invisible=False),
|
| 180 |
+
dict(
|
| 181 |
+
type='ObjectRangeFilterTrack',
|
| 182 |
+
point_cloud_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]),
|
| 183 |
+
dict(
|
| 184 |
+
type='ObjectNameFilterTrack',
|
| 185 |
+
classes=[
|
| 186 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 187 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian',
|
| 188 |
+
'traffic_cone'
|
| 189 |
+
]),
|
| 190 |
+
dict(
|
| 191 |
+
type='NormalizeMultiviewImage',
|
| 192 |
+
mean=[103.53, 116.28, 123.675],
|
| 193 |
+
std=[1.0, 1.0, 1.0],
|
| 194 |
+
to_rgb=False),
|
| 195 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 196 |
+
dict(
|
| 197 |
+
type='DefaultFormatBundle3D',
|
| 198 |
+
class_names=[
|
| 199 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 200 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian',
|
| 201 |
+
'traffic_cone'
|
| 202 |
+
]),
|
| 203 |
+
dict(
|
| 204 |
+
type='CustomCollect3D',
|
| 205 |
+
keys=[
|
| 206 |
+
'gt_bboxes_3d', 'gt_labels_3d', 'gt_inds', 'img',
|
| 207 |
+
'timestamp', 'l2g_r_mat', 'l2g_t', 'gt_fut_traj',
|
| 208 |
+
'gt_fut_traj_mask', 'gt_past_traj', 'gt_past_traj_mask',
|
| 209 |
+
'gt_sdc_bbox', 'gt_sdc_label', 'gt_sdc_fut_traj',
|
| 210 |
+
'gt_sdc_fut_traj_mask', 'gt_lane_labels', 'gt_lane_bboxes',
|
| 211 |
+
'gt_lane_masks', 'gt_segmentation', 'gt_instance',
|
| 212 |
+
'gt_centerness', 'gt_offset', 'gt_flow',
|
| 213 |
+
'gt_backward_flow', 'gt_occ_has_invalid_frame',
|
| 214 |
+
'gt_occ_img_is_valid', 'gt_future_boxes',
|
| 215 |
+
'gt_future_labels', 'sdc_planning', 'sdc_planning_mask',
|
| 216 |
+
'command'
|
| 217 |
+
])
|
| 218 |
+
],
|
| 219 |
+
classes=[
|
| 220 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 221 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 222 |
+
],
|
| 223 |
+
modality=dict(
|
| 224 |
+
use_lidar=False,
|
| 225 |
+
use_camera=True,
|
| 226 |
+
use_radar=False,
|
| 227 |
+
use_map=False,
|
| 228 |
+
use_external=True),
|
| 229 |
+
test_mode=False,
|
| 230 |
+
box_type_3d='LiDAR',
|
| 231 |
+
file_client_args=dict(backend='disk'),
|
| 232 |
+
use_valid_flag=True,
|
| 233 |
+
patch_size=[102.4, 102.4],
|
| 234 |
+
canvas_size=(200, 200),
|
| 235 |
+
bev_size=(200, 200),
|
| 236 |
+
queue_length=5,
|
| 237 |
+
predict_steps=12,
|
| 238 |
+
past_steps=4,
|
| 239 |
+
fut_steps=4,
|
| 240 |
+
use_nonlinear_optimizer=True,
|
| 241 |
+
occ_receptive_field=3,
|
| 242 |
+
occ_n_future=6,
|
| 243 |
+
occ_filter_invalid_sample=False),
|
| 244 |
+
val=dict(
|
| 245 |
+
type='NuScenesE2EDataset',
|
| 246 |
+
data_root='data/nuscenes/',
|
| 247 |
+
ann_file='data/infos/nuscenes_infos_temporal_val.pkl',
|
| 248 |
+
pipeline=[
|
| 249 |
+
dict(
|
| 250 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 251 |
+
to_float32=True,
|
| 252 |
+
file_client_args=dict(backend='disk'),
|
| 253 |
+
img_root=''),
|
| 254 |
+
dict(
|
| 255 |
+
type='NormalizeMultiviewImage',
|
| 256 |
+
mean=[103.53, 116.28, 123.675],
|
| 257 |
+
std=[1.0, 1.0, 1.0],
|
| 258 |
+
to_rgb=False),
|
| 259 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 260 |
+
dict(
|
| 261 |
+
type='LoadAnnotations3D_E2E',
|
| 262 |
+
with_bbox_3d=False,
|
| 263 |
+
with_label_3d=False,
|
| 264 |
+
with_attr_label=False,
|
| 265 |
+
with_future_anns=True,
|
| 266 |
+
with_ins_inds_3d=False,
|
| 267 |
+
ins_inds_add_1=True),
|
| 268 |
+
dict(
|
| 269 |
+
type='GenerateOccFlowLabels',
|
| 270 |
+
grid_conf=dict(
|
| 271 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 272 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 273 |
+
zbound=[-10.0, 10.0, 20.0]),
|
| 274 |
+
ignore_index=255,
|
| 275 |
+
only_vehicle=True,
|
| 276 |
+
filter_invisible=False),
|
| 277 |
+
dict(
|
| 278 |
+
type='MultiScaleFlipAug3D',
|
| 279 |
+
img_scale=(1600, 900),
|
| 280 |
+
pts_scale_ratio=1,
|
| 281 |
+
flip=False,
|
| 282 |
+
transforms=[
|
| 283 |
+
dict(
|
| 284 |
+
type='DefaultFormatBundle3D',
|
| 285 |
+
class_names=[
|
| 286 |
+
'car', 'truck', 'construction_vehicle', 'bus',
|
| 287 |
+
'trailer', 'barrier', 'motorcycle', 'bicycle',
|
| 288 |
+
'pedestrian', 'traffic_cone'
|
| 289 |
+
],
|
| 290 |
+
with_label=False),
|
| 291 |
+
dict(
|
| 292 |
+
type='CustomCollect3D',
|
| 293 |
+
keys=[
|
| 294 |
+
'img', 'timestamp', 'l2g_r_mat', 'l2g_t',
|
| 295 |
+
'gt_lane_labels', 'gt_lane_bboxes',
|
| 296 |
+
'gt_lane_masks', 'gt_segmentation', 'gt_instance',
|
| 297 |
+
'gt_centerness', 'gt_offset', 'gt_flow',
|
| 298 |
+
'gt_backward_flow', 'gt_occ_has_invalid_frame',
|
| 299 |
+
'gt_occ_img_is_valid', 'sdc_planning',
|
| 300 |
+
'sdc_planning_mask', 'command'
|
| 301 |
+
])
|
| 302 |
+
])
|
| 303 |
+
],
|
| 304 |
+
classes=[
|
| 305 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 306 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 307 |
+
],
|
| 308 |
+
modality=dict(
|
| 309 |
+
use_lidar=False,
|
| 310 |
+
use_camera=True,
|
| 311 |
+
use_radar=False,
|
| 312 |
+
use_map=False,
|
| 313 |
+
use_external=True),
|
| 314 |
+
test_mode=True,
|
| 315 |
+
box_type_3d='LiDAR',
|
| 316 |
+
file_client_args=dict(backend='disk'),
|
| 317 |
+
patch_size=[102.4, 102.4],
|
| 318 |
+
canvas_size=(200, 200),
|
| 319 |
+
bev_size=(200, 200),
|
| 320 |
+
predict_steps=12,
|
| 321 |
+
past_steps=4,
|
| 322 |
+
fut_steps=4,
|
| 323 |
+
use_nonlinear_optimizer=True,
|
| 324 |
+
samples_per_gpu=1,
|
| 325 |
+
eval_mod=['det', 'track', 'map'],
|
| 326 |
+
occ_receptive_field=3,
|
| 327 |
+
occ_n_future=6,
|
| 328 |
+
occ_filter_invalid_sample=False),
|
| 329 |
+
test=dict(
|
| 330 |
+
type='NuScenesE2EDataset',
|
| 331 |
+
data_root='data/nuscenes/',
|
| 332 |
+
ann_file='data/infos/nuscenes_infos_temporal_val.pkl',
|
| 333 |
+
pipeline=[
|
| 334 |
+
dict(
|
| 335 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 336 |
+
to_float32=True,
|
| 337 |
+
file_client_args=dict(backend='disk'),
|
| 338 |
+
img_root=''),
|
| 339 |
+
dict(
|
| 340 |
+
type='NormalizeMultiviewImage',
|
| 341 |
+
mean=[103.53, 116.28, 123.675],
|
| 342 |
+
std=[1.0, 1.0, 1.0],
|
| 343 |
+
to_rgb=False),
|
| 344 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 345 |
+
dict(
|
| 346 |
+
type='LoadAnnotations3D_E2E',
|
| 347 |
+
with_bbox_3d=False,
|
| 348 |
+
with_label_3d=False,
|
| 349 |
+
with_attr_label=False,
|
| 350 |
+
with_future_anns=True,
|
| 351 |
+
with_ins_inds_3d=False,
|
| 352 |
+
ins_inds_add_1=True),
|
| 353 |
+
dict(
|
| 354 |
+
type='GenerateOccFlowLabels',
|
| 355 |
+
grid_conf=dict(
|
| 356 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 357 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 358 |
+
zbound=[-10.0, 10.0, 20.0]),
|
| 359 |
+
ignore_index=255,
|
| 360 |
+
only_vehicle=True,
|
| 361 |
+
filter_invisible=False),
|
| 362 |
+
dict(
|
| 363 |
+
type='MultiScaleFlipAug3D',
|
| 364 |
+
img_scale=(1600, 900),
|
| 365 |
+
pts_scale_ratio=1,
|
| 366 |
+
flip=False,
|
| 367 |
+
transforms=[
|
| 368 |
+
dict(
|
| 369 |
+
type='DefaultFormatBundle3D',
|
| 370 |
+
class_names=[
|
| 371 |
+
'car', 'truck', 'construction_vehicle', 'bus',
|
| 372 |
+
'trailer', 'barrier', 'motorcycle', 'bicycle',
|
| 373 |
+
'pedestrian', 'traffic_cone'
|
| 374 |
+
],
|
| 375 |
+
with_label=False),
|
| 376 |
+
dict(
|
| 377 |
+
type='CustomCollect3D',
|
| 378 |
+
keys=[
|
| 379 |
+
'img', 'timestamp', 'l2g_r_mat', 'l2g_t',
|
| 380 |
+
'gt_lane_labels', 'gt_lane_bboxes',
|
| 381 |
+
'gt_lane_masks', 'gt_segmentation', 'gt_instance',
|
| 382 |
+
'gt_centerness', 'gt_offset', 'gt_flow',
|
| 383 |
+
'gt_backward_flow', 'gt_occ_has_invalid_frame',
|
| 384 |
+
'gt_occ_img_is_valid', 'sdc_planning',
|
| 385 |
+
'sdc_planning_mask', 'command'
|
| 386 |
+
])
|
| 387 |
+
])
|
| 388 |
+
],
|
| 389 |
+
classes=[
|
| 390 |
+
'car', 'truck', 'construction_vehicle', 'bus', 'trailer',
|
| 391 |
+
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
|
| 392 |
+
],
|
| 393 |
+
modality=dict(
|
| 394 |
+
use_lidar=False,
|
| 395 |
+
use_camera=True,
|
| 396 |
+
use_radar=False,
|
| 397 |
+
use_map=False,
|
| 398 |
+
use_external=True),
|
| 399 |
+
test_mode=True,
|
| 400 |
+
box_type_3d='LiDAR',
|
| 401 |
+
file_client_args=dict(backend='disk'),
|
| 402 |
+
patch_size=[102.4, 102.4],
|
| 403 |
+
canvas_size=(200, 200),
|
| 404 |
+
bev_size=(200, 200),
|
| 405 |
+
predict_steps=12,
|
| 406 |
+
past_steps=4,
|
| 407 |
+
fut_steps=4,
|
| 408 |
+
occ_n_future=6,
|
| 409 |
+
use_nonlinear_optimizer=True,
|
| 410 |
+
eval_mod=['det', 'map', 'track']),
|
| 411 |
+
shuffler_sampler=dict(type='DistributedGroupSampler'),
|
| 412 |
+
nonshuffler_sampler=dict(type='DistributedSampler'))
|
| 413 |
+
evaluation = dict(
|
| 414 |
+
interval=6,
|
| 415 |
+
pipeline=[
|
| 416 |
+
dict(
|
| 417 |
+
type='LoadMultiViewImageFromFilesInCeph',
|
| 418 |
+
to_float32=True,
|
| 419 |
+
file_client_args=dict(backend='disk'),
|
| 420 |
+
img_root=''),
|
| 421 |
+
dict(
|
| 422 |
+
type='NormalizeMultiviewImage',
|
| 423 |
+
mean=[103.53, 116.28, 123.675],
|
| 424 |
+
std=[1.0, 1.0, 1.0],
|
| 425 |
+
to_rgb=False),
|
| 426 |
+
dict(type='PadMultiViewImage', size_divisor=32),
|
| 427 |
+
dict(
|
| 428 |
+
type='LoadAnnotations3D_E2E',
|
| 429 |
+
with_bbox_3d=False,
|
| 430 |
+
with_label_3d=False,
|
| 431 |
+
with_attr_label=False,
|
| 432 |
+
with_future_anns=True,
|
| 433 |
+
with_ins_inds_3d=False,
|
| 434 |
+
ins_inds_add_1=True),
|
| 435 |
+
dict(
|
| 436 |
+
type='GenerateOccFlowLabels',
|
| 437 |
+
grid_conf=dict(
|
| 438 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 439 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 440 |
+
zbound=[-10.0, 10.0, 20.0]),
|
| 441 |
+
ignore_index=255,
|
| 442 |
+
only_vehicle=True,
|
| 443 |
+
filter_invisible=False),
|
| 444 |
+
dict(
|
| 445 |
+
type='MultiScaleFlipAug3D',
|
| 446 |
+
img_scale=(1600, 900),
|
| 447 |
+
pts_scale_ratio=1,
|
| 448 |
+
flip=False,
|
| 449 |
+
transforms=[
|
| 450 |
+
dict(
|
| 451 |
+
type='DefaultFormatBundle3D',
|
| 452 |
+
class_names=[
|
| 453 |
+
'car', 'truck', 'construction_vehicle', 'bus',
|
| 454 |
+
'trailer', 'barrier', 'motorcycle', 'bicycle',
|
| 455 |
+
'pedestrian', 'traffic_cone'
|
| 456 |
+
],
|
| 457 |
+
with_label=False),
|
| 458 |
+
dict(
|
| 459 |
+
type='CustomCollect3D',
|
| 460 |
+
keys=[
|
| 461 |
+
'img', 'timestamp', 'l2g_r_mat', 'l2g_t',
|
| 462 |
+
'gt_lane_labels', 'gt_lane_bboxes', 'gt_lane_masks',
|
| 463 |
+
'gt_segmentation', 'gt_instance', 'gt_centerness',
|
| 464 |
+
'gt_offset', 'gt_flow', 'gt_backward_flow',
|
| 465 |
+
'gt_occ_has_invalid_frame', 'gt_occ_img_is_valid',
|
| 466 |
+
'sdc_planning', 'sdc_planning_mask', 'command'
|
| 467 |
+
])
|
| 468 |
+
])
|
| 469 |
+
],
|
| 470 |
+
planning_evaluation_strategy='uniad')
|
| 471 |
+
checkpoint_config = dict(interval=1)
|
| 472 |
+
log_config = dict(
|
| 473 |
+
interval=10,
|
| 474 |
+
hooks=[dict(type='TextLoggerHook'),
|
| 475 |
+
dict(type='TensorboardLoggerHook')])
|
| 476 |
+
dist_params = dict(backend='nccl')
|
| 477 |
+
log_level = 'INFO'
|
| 478 |
+
work_dir = 'projects/work_dirs/stage1_track_map/base_track_map/'
|
| 479 |
+
load_from = 'ckpts/bevformer_r101_dcn_24ep.pth'
|
| 480 |
+
resume_from = None
|
| 481 |
+
workflow = [('train', 1)]
|
| 482 |
+
plugin = True
|
| 483 |
+
plugin_dir = 'projects/mmdet3d_plugin/'
|
| 484 |
+
voxel_size = [0.2, 0.2, 8]
|
| 485 |
+
patch_size = [102.4, 102.4]
|
| 486 |
+
img_norm_cfg = dict(
|
| 487 |
+
mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
|
| 488 |
+
_dim_ = 256
|
| 489 |
+
_pos_dim_ = 128
|
| 490 |
+
_ffn_dim_ = 512
|
| 491 |
+
_num_levels_ = 4
|
| 492 |
+
bev_h_ = 200
|
| 493 |
+
bev_w_ = 200
|
| 494 |
+
_feed_dim_ = 512
|
| 495 |
+
_dim_half_ = 128
|
| 496 |
+
canvas_size = (200, 200)
|
| 497 |
+
queue_length = 5
|
| 498 |
+
predict_steps = 12
|
| 499 |
+
predict_modes = 6
|
| 500 |
+
fut_steps = 4
|
| 501 |
+
past_steps = 4
|
| 502 |
+
use_nonlinear_optimizer = True
|
| 503 |
+
occ_n_future = 4
|
| 504 |
+
occ_n_future_plan = 6
|
| 505 |
+
occ_n_future_max = 6
|
| 506 |
+
planning_steps = 6
|
| 507 |
+
use_col_optim = True
|
| 508 |
+
planning_evaluation_strategy = 'uniad'
|
| 509 |
+
occflow_grid_conf = dict(
|
| 510 |
+
xbound=[-50.0, 50.0, 0.5],
|
| 511 |
+
ybound=[-50.0, 50.0, 0.5],
|
| 512 |
+
zbound=[-10.0, 10.0, 20.0])
|
| 513 |
+
train_gt_iou_threshold = 0.3
|
| 514 |
+
model = dict(
|
| 515 |
+
type='UniAD',
|
| 516 |
+
gt_iou_threshold=0.3,
|
| 517 |
+
queue_length=5,
|
| 518 |
+
use_grid_mask=True,
|
| 519 |
+
video_test_mode=True,
|
| 520 |
+
num_query=900,
|
| 521 |
+
num_classes=10,
|
| 522 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 523 |
+
img_backbone=dict(
|
| 524 |
+
type='ResNet',
|
| 525 |
+
depth=101,
|
| 526 |
+
num_stages=4,
|
| 527 |
+
out_indices=(1, 2, 3),
|
| 528 |
+
frozen_stages=4,
|
| 529 |
+
norm_cfg=dict(type='BN2d', requires_grad=False),
|
| 530 |
+
norm_eval=True,
|
| 531 |
+
style='caffe',
|
| 532 |
+
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
|
| 533 |
+
stage_with_dcn=(False, False, True, True)),
|
| 534 |
+
img_neck=dict(
|
| 535 |
+
type='FPN',
|
| 536 |
+
in_channels=[512, 1024, 2048],
|
| 537 |
+
out_channels=256,
|
| 538 |
+
start_level=0,
|
| 539 |
+
add_extra_convs='on_output',
|
| 540 |
+
num_outs=4,
|
| 541 |
+
relu_before_extra_convs=True),
|
| 542 |
+
freeze_img_backbone=True,
|
| 543 |
+
freeze_img_neck=False,
|
| 544 |
+
freeze_bn=False,
|
| 545 |
+
score_thresh=0.4,
|
| 546 |
+
filter_score_thresh=0.35,
|
| 547 |
+
qim_args=dict(
|
| 548 |
+
qim_type='QIMBase',
|
| 549 |
+
merger_dropout=0,
|
| 550 |
+
update_query_pos=True,
|
| 551 |
+
fp_ratio=0.3,
|
| 552 |
+
random_drop=0.1),
|
| 553 |
+
mem_args=dict(
|
| 554 |
+
memory_bank_type='MemoryBank',
|
| 555 |
+
memory_bank_score_thresh=0.0,
|
| 556 |
+
memory_bank_len=4),
|
| 557 |
+
loss_cfg=dict(
|
| 558 |
+
type='ClipMatcher',
|
| 559 |
+
num_classes=10,
|
| 560 |
+
weight_dict=None,
|
| 561 |
+
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2],
|
| 562 |
+
assigner=dict(
|
| 563 |
+
type='HungarianAssigner3DTrack',
|
| 564 |
+
cls_cost=dict(type='FocalLossCost', weight=2.0),
|
| 565 |
+
reg_cost=dict(type='BBox3DL1Cost', weight=0.25),
|
| 566 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]),
|
| 567 |
+
loss_cls=dict(
|
| 568 |
+
type='FocalLoss',
|
| 569 |
+
use_sigmoid=True,
|
| 570 |
+
gamma=2.0,
|
| 571 |
+
alpha=0.25,
|
| 572 |
+
loss_weight=2.0),
|
| 573 |
+
loss_bbox=dict(type='L1Loss', loss_weight=0.25),
|
| 574 |
+
loss_past_traj_weight=0.0),
|
| 575 |
+
pts_bbox_head=dict(
|
| 576 |
+
type='BEVFormerTrackHead',
|
| 577 |
+
bev_h=200,
|
| 578 |
+
bev_w=200,
|
| 579 |
+
num_query=900,
|
| 580 |
+
num_classes=10,
|
| 581 |
+
in_channels=256,
|
| 582 |
+
sync_cls_avg_factor=True,
|
| 583 |
+
with_box_refine=True,
|
| 584 |
+
as_two_stage=False,
|
| 585 |
+
past_steps=4,
|
| 586 |
+
fut_steps=4,
|
| 587 |
+
transformer=dict(
|
| 588 |
+
type='PerceptionTransformer',
|
| 589 |
+
rotate_prev_bev=True,
|
| 590 |
+
use_shift=True,
|
| 591 |
+
use_can_bus=True,
|
| 592 |
+
embed_dims=256,
|
| 593 |
+
encoder=dict(
|
| 594 |
+
type='BEVFormerEncoder',
|
| 595 |
+
num_layers=6,
|
| 596 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 597 |
+
num_points_in_pillar=4,
|
| 598 |
+
return_intermediate=False,
|
| 599 |
+
transformerlayers=dict(
|
| 600 |
+
type='BEVFormerLayer',
|
| 601 |
+
attn_cfgs=[
|
| 602 |
+
dict(
|
| 603 |
+
type='TemporalSelfAttention',
|
| 604 |
+
embed_dims=256,
|
| 605 |
+
num_levels=1),
|
| 606 |
+
dict(
|
| 607 |
+
type='SpatialCrossAttention',
|
| 608 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 609 |
+
deformable_attention=dict(
|
| 610 |
+
type='MSDeformableAttention3D',
|
| 611 |
+
embed_dims=256,
|
| 612 |
+
num_points=8,
|
| 613 |
+
num_levels=4),
|
| 614 |
+
embed_dims=256)
|
| 615 |
+
],
|
| 616 |
+
feedforward_channels=512,
|
| 617 |
+
ffn_dropout=0.1,
|
| 618 |
+
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
| 619 |
+
'ffn', 'norm'))),
|
| 620 |
+
decoder=dict(
|
| 621 |
+
type='DetectionTransformerDecoder',
|
| 622 |
+
num_layers=6,
|
| 623 |
+
return_intermediate=True,
|
| 624 |
+
transformerlayers=dict(
|
| 625 |
+
type='DetrTransformerDecoderLayer',
|
| 626 |
+
attn_cfgs=[
|
| 627 |
+
dict(
|
| 628 |
+
type='MultiheadAttention',
|
| 629 |
+
embed_dims=256,
|
| 630 |
+
num_heads=8,
|
| 631 |
+
dropout=0.1),
|
| 632 |
+
dict(
|
| 633 |
+
type='CustomMSDeformableAttention',
|
| 634 |
+
embed_dims=256,
|
| 635 |
+
num_levels=1)
|
| 636 |
+
],
|
| 637 |
+
feedforward_channels=512,
|
| 638 |
+
ffn_dropout=0.1,
|
| 639 |
+
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
| 640 |
+
'ffn', 'norm')))),
|
| 641 |
+
bbox_coder=dict(
|
| 642 |
+
type='NMSFreeCoder',
|
| 643 |
+
post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
|
| 644 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 645 |
+
max_num=300,
|
| 646 |
+
voxel_size=[0.2, 0.2, 8],
|
| 647 |
+
num_classes=10),
|
| 648 |
+
positional_encoding=dict(
|
| 649 |
+
type='LearnedPositionalEncoding',
|
| 650 |
+
num_feats=128,
|
| 651 |
+
row_num_embed=200,
|
| 652 |
+
col_num_embed=200),
|
| 653 |
+
loss_cls=dict(
|
| 654 |
+
type='FocalLoss',
|
| 655 |
+
use_sigmoid=True,
|
| 656 |
+
gamma=2.0,
|
| 657 |
+
alpha=0.25,
|
| 658 |
+
loss_weight=2.0),
|
| 659 |
+
loss_bbox=dict(type='L1Loss', loss_weight=0.25),
|
| 660 |
+
loss_iou=dict(type='GIoULoss', loss_weight=0.0)),
|
| 661 |
+
seg_head=dict(
|
| 662 |
+
type='PansegformerHead',
|
| 663 |
+
bev_h=200,
|
| 664 |
+
bev_w=200,
|
| 665 |
+
canvas_size=(200, 200),
|
| 666 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 667 |
+
num_query=300,
|
| 668 |
+
num_classes=4,
|
| 669 |
+
num_things_classes=3,
|
| 670 |
+
num_stuff_classes=1,
|
| 671 |
+
in_channels=2048,
|
| 672 |
+
sync_cls_avg_factor=True,
|
| 673 |
+
as_two_stage=False,
|
| 674 |
+
with_box_refine=True,
|
| 675 |
+
transformer=dict(
|
| 676 |
+
type='SegDeformableTransformer',
|
| 677 |
+
encoder=dict(
|
| 678 |
+
type='DetrTransformerEncoder',
|
| 679 |
+
num_layers=6,
|
| 680 |
+
transformerlayers=dict(
|
| 681 |
+
type='BaseTransformerLayer',
|
| 682 |
+
attn_cfgs=dict(
|
| 683 |
+
type='MultiScaleDeformableAttention',
|
| 684 |
+
embed_dims=256,
|
| 685 |
+
num_levels=4),
|
| 686 |
+
feedforward_channels=512,
|
| 687 |
+
ffn_dropout=0.1,
|
| 688 |
+
operation_order=('self_attn', 'norm', 'ffn', 'norm'))),
|
| 689 |
+
decoder=dict(
|
| 690 |
+
type='DeformableDetrTransformerDecoder',
|
| 691 |
+
num_layers=6,
|
| 692 |
+
return_intermediate=True,
|
| 693 |
+
transformerlayers=dict(
|
| 694 |
+
type='DetrTransformerDecoderLayer',
|
| 695 |
+
attn_cfgs=[
|
| 696 |
+
dict(
|
| 697 |
+
type='MultiheadAttention',
|
| 698 |
+
embed_dims=256,
|
| 699 |
+
num_heads=8,
|
| 700 |
+
dropout=0.1),
|
| 701 |
+
dict(
|
| 702 |
+
type='MultiScaleDeformableAttention',
|
| 703 |
+
embed_dims=256,
|
| 704 |
+
num_levels=4)
|
| 705 |
+
],
|
| 706 |
+
feedforward_channels=512,
|
| 707 |
+
ffn_dropout=0.1,
|
| 708 |
+
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
| 709 |
+
'ffn', 'norm')))),
|
| 710 |
+
positional_encoding=dict(
|
| 711 |
+
type='SinePositionalEncoding',
|
| 712 |
+
num_feats=128,
|
| 713 |
+
normalize=True,
|
| 714 |
+
offset=-0.5),
|
| 715 |
+
loss_cls=dict(
|
| 716 |
+
type='FocalLoss',
|
| 717 |
+
use_sigmoid=True,
|
| 718 |
+
gamma=2.0,
|
| 719 |
+
alpha=0.25,
|
| 720 |
+
loss_weight=2.0),
|
| 721 |
+
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
|
| 722 |
+
loss_iou=dict(type='GIoULoss', loss_weight=2.0),
|
| 723 |
+
loss_mask=dict(type='DiceLoss', loss_weight=2.0),
|
| 724 |
+
thing_transformer_head=dict(
|
| 725 |
+
type='SegMaskHead', d_model=256, nhead=8, num_decoder_layers=4),
|
| 726 |
+
stuff_transformer_head=dict(
|
| 727 |
+
type='SegMaskHead',
|
| 728 |
+
d_model=256,
|
| 729 |
+
nhead=8,
|
| 730 |
+
num_decoder_layers=6,
|
| 731 |
+
self_attn=True),
|
| 732 |
+
train_cfg=dict(
|
| 733 |
+
assigner=dict(
|
| 734 |
+
type='HungarianAssigner',
|
| 735 |
+
cls_cost=dict(type='FocalLossCost', weight=2.0),
|
| 736 |
+
reg_cost=dict(
|
| 737 |
+
type='BBoxL1Cost', weight=5.0, box_format='xywh'),
|
| 738 |
+
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0)),
|
| 739 |
+
assigner_with_mask=dict(
|
| 740 |
+
type='HungarianAssigner_multi_info',
|
| 741 |
+
cls_cost=dict(type='FocalLossCost', weight=2.0),
|
| 742 |
+
reg_cost=dict(
|
| 743 |
+
type='BBoxL1Cost', weight=5.0, box_format='xywh'),
|
| 744 |
+
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0),
|
| 745 |
+
mask_cost=dict(type='DiceCost', weight=2.0)),
|
| 746 |
+
sampler=dict(type='PseudoSampler'),
|
| 747 |
+
sampler_with_mask=dict(type='PseudoSampler_segformer'))),
|
| 748 |
+
train_cfg=dict(
|
| 749 |
+
pts=dict(
|
| 750 |
+
grid_size=[512, 512, 1],
|
| 751 |
+
voxel_size=[0.2, 0.2, 8],
|
| 752 |
+
point_cloud_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0],
|
| 753 |
+
out_size_factor=4,
|
| 754 |
+
assigner=dict(
|
| 755 |
+
type='HungarianAssigner3D',
|
| 756 |
+
cls_cost=dict(type='FocalLossCost', weight=2.0),
|
| 757 |
+
reg_cost=dict(type='BBox3DL1Cost', weight=0.25),
|
| 758 |
+
iou_cost=dict(type='IoUCost', weight=0.0),
|
| 759 |
+
pc_range=[-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]))))
|
| 760 |
+
info_root = 'data/infos/'
|
| 761 |
+
ann_file_train = 'data/infos/nuscenes_infos_temporal_train.pkl'
|
| 762 |
+
ann_file_val = 'data/infos/nuscenes_infos_temporal_val.pkl'
|
| 763 |
+
ann_file_test = 'data/infos/nuscenes_infos_temporal_val.pkl'
|
| 764 |
+
optimizer = dict(
|
| 765 |
+
type='AdamW',
|
| 766 |
+
lr=0.0002,
|
| 767 |
+
paramwise_cfg=dict(custom_keys=dict(img_backbone=dict(lr_mult=0.1))),
|
| 768 |
+
weight_decay=0.01)
|
| 769 |
+
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
|
| 770 |
+
lr_config = dict(
|
| 771 |
+
policy='CosineAnnealing',
|
| 772 |
+
warmup='linear',
|
| 773 |
+
warmup_iters=500,
|
| 774 |
+
warmup_ratio=0.3333333333333333,
|
| 775 |
+
min_lr_ratio=0.001)
|
| 776 |
+
total_epochs = 6
|
| 777 |
+
runner = dict(type='EpochBasedRunner', max_epochs=6)
|
| 778 |
+
find_unused_parameters = True
|
| 779 |
+
logger_name = 'mmdet'
|
| 780 |
+
gpu_ids = range(0, 1)
|