File size: 6,701 Bytes
9d43dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python3
"""
BIT-LEVEL TRANSFORMER - The Ultimate Zero-Overhead Model
Vocab = 2 (just 0 and 1)
No tokenization. No bytes. Pure binary.

Each byte becomes 8 tokens (bits).
Model learns ALL structure from raw bits.
"""

import sys
import math
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import deque

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cuda.matmul.allow_tf32 = True

# BIT-LEVEL CONFIG - ABSOLUTE UNIT
CONFIG = {
    "d": 768,        # GPT-2 small size
    "layers": 12,    # DEEP for bit pattern learning
    "heads": 12,
    "vocab": 2,      # JUST 0 AND 1!
    "ctx": 4096,     # 512 bytes of context
}

LR = 3e-4           # learning rate
UPDATE_EVERY = 2048  # bits between updates (256 bytes worth) - BIGGER BATCHES
PRINT_EVERY = 100000   # bits

class BitAttention(nn.Module):
    def __init__(self, d, h):
        super().__init__()
        self.h, self.dk = h, d // h
        self.qkv = nn.Linear(d, 3 * d, bias=False)
        self.proj = nn.Linear(d, d, bias=False)
        
    def forward(self, x, mask=None):
        B, N, D = x.shape
        qkv = self.qkv(x).view(B, N, 3, self.h, self.dk).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]
        att = (q @ k.transpose(-1, -2)) / math.sqrt(self.dk)
        if mask is not None:
            att = att + mask
        return self.proj((F.softmax(att, -1) @ v).transpose(1, 2).reshape(B, N, D))

class BitBlock(nn.Module):
    def __init__(self, d, h):
        super().__init__()
        self.ln1, self.ln2 = nn.LayerNorm(d), nn.LayerNorm(d)
        self.attn = BitAttention(d, h)
        self.ff = nn.Sequential(nn.Linear(d, 4*d), nn.GELU(), nn.Linear(4*d, d))
        
    def forward(self, x, mask):
        x = x + self.attn(self.ln1(x), mask)
        return x + self.ff(self.ln2(x))

class BitTransformer(nn.Module):
    """Transformer with vocab=2 (just 0 and 1)"""
    def __init__(self, cfg):
        super().__init__()
        d, L, h = cfg["d"], cfg["layers"], cfg["heads"]
        self.emb = nn.Embedding(2, d)  # ONLY 2 EMBEDDINGS!
        self.blocks = nn.ModuleList([BitBlock(d, h) for _ in range(L)])
        self.ln = nn.LayerNorm(d)
        self.head = nn.Linear(d, 2, bias=False)  # predict 0 or 1
        
    def forward(self, x):
        B, N = x.shape
        mask = torch.triu(torch.ones(N, N, device=x.device), 1) * -1e9
        h = self.emb(x)
        for block in self.blocks:
            h = block(h, mask)
        return self.head(self.ln(h))
    
    def count_params(self):
        return sum(p.numel() for p in self.parameters())

def byte_to_bits(byte_val):
    """Convert byte to 8 bits (MSB first)"""
    return [(byte_val >> (7 - i)) & 1 for i in range(8)]

def bits_to_byte(bits):
    """Convert 8 bits back to byte"""
    val = 0
    for i, b in enumerate(bits[:8]):
        val |= (b << (7 - i))
    return val

class BitTrainer:
    def __init__(self, model, lr=LR):
        self.model = model.to(DEVICE)
        self.opt = torch.optim.AdamW(model.parameters(), lr=lr)
        self.ctx_size = CONFIG["ctx"]
        self.buffer = deque(maxlen=self.ctx_size + 1)
        
        self.bits_seen = 0
        self.bytes_seen = 0
        self.total_loss = 0.0
        self.updates = 0
        self.start_time = time.time()
        
    def ingest_byte(self, byte_val):
        """Convert byte to 8 bits and absorb"""
        bits = byte_to_bits(byte_val)
        for bit in bits:
            self.buffer.append(bit)
            self.bits_seen += 1
            
            if len(self.buffer) >= UPDATE_EVERY + 1 and self.bits_seen % UPDATE_EVERY == 0:
                self._update()
        
        self.bytes_seen += 1
        
        if self.bits_seen % PRINT_EVERY == 0:
            self._print_stats()
            
        if self.bytes_seen % 500000 == 0 and self.bytes_seen > 0:
            self._save()
    
    def _update(self):
        bits = list(self.buffer)
        x = torch.tensor(bits[:-1], device=DEVICE, dtype=torch.long).unsqueeze(0)
        y = torch.tensor(bits[1:], device=DEVICE, dtype=torch.long).unsqueeze(0)
        
        self.model.train()
        logits = self.model(x)
        loss = F.cross_entropy(
            logits[:, -UPDATE_EVERY:].reshape(-1, 2),
            y[:, -UPDATE_EVERY:].reshape(-1)
        )
        
        self.opt.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
        self.opt.step()
        
        self.total_loss += loss.item()
        self.updates += 1
    
    def _print_stats(self):
        elapsed = time.time() - self.start_time
        bits_per_sec = self.bits_seen / elapsed if elapsed > 0 else 0
        bytes_per_sec = self.bytes_seen / elapsed if elapsed > 0 else 0
        avg_loss = self.total_loss / max(1, self.updates)
        
        # For bits: random is 1.0 (coin flip), lower = learning
        # Entropy in bits per bit
        entropy = avg_loss / math.log(2)
        compression = (1.0 - entropy) * 100  # % compression vs random
        
        print(f"[{elapsed:.0f}s] {self.bytes_seen/1000:.1f}KB | {bytes_per_sec/1000:.1f} KB/s | "
              f"loss={avg_loss:.4f} | entropy={entropy:.3f} bit/bit | "
              f"compression={compression:.1f}%", flush=True)
    
    def _save(self):
        avg_loss = self.total_loss / max(1, self.updates)
        kb = self.bytes_seen // 1000
        ckpt = {
            "model": self.model.state_dict(),
            "bits": self.bits_seen,
            "bytes": self.bytes_seen,
            "loss": avg_loss,
        }
        torch.save(ckpt, f"/workspace/bit_ckpt_{kb}kb.pt")
        print(f"[SAVED] bit_ckpt_{kb}kb.pt", flush=True)

def main():
    print(f"BIT-LEVEL TRANSFORMER - Vocab = 2 (just 0 and 1)", flush=True)
    print(f"Config: {CONFIG}", flush=True)
    print(f"Device: {DEVICE}", flush=True)
    
    model = BitTransformer(CONFIG)
    params = model.count_params()
    print(f"Parameters: {params:,} ({params/1e6:.2f}M)", flush=True)
    print(f"Vocab: 2 (literally just 0 and 1)", flush=True)
    print(f"Each byte = 8 bit tokens", flush=True)
    
    trainer = BitTrainer(model)
    
    print(f"Listening for bytes (FAST batch mode)...", flush=True)
    
    # Read in large chunks for speed
    CHUNK_SIZE = 8192  # 8KB chunks = 65536 bits
    while True:
        chunk = sys.stdin.buffer.read(CHUNK_SIZE)
        if not chunk:
            break
        for byte in chunk:
            trainer.ingest_byte(byte)
    
    print(f"Stream ended. Total: {trainer.bytes_seen:,} bytes = {trainer.bits_seen:,} bits", flush=True)

if __name__ == "__main__":
    main()