| import torch | |
| import torch.nn as nn | |
| class EuroSATCNN(nn.Module): | |
| def __init__(self, num_classes, img_height=64, img_width=64): | |
| super(EuroSATCNN, self).__init__() | |
| self.features = nn.Sequential( | |
| nn.Conv2d(13, 128, kernel_size=4, padding=1), | |
| nn.ReLU(), | |
| nn.MaxPool2d(kernel_size=2), | |
| nn.Conv2d(128, 64, kernel_size=4, padding=1), | |
| nn.ReLU(), | |
| nn.MaxPool2d(kernel_size=2), | |
| nn.Conv2d(64, 32, kernel_size=4, padding=1), | |
| nn.ReLU(), | |
| nn.MaxPool2d(kernel_size=2), | |
| nn.Conv2d(32, 16, kernel_size=4, padding=1), | |
| nn.ReLU(), | |
| nn.MaxPool2d(kernel_size=2), | |
| ) | |
| with torch.no_grad(): | |
| dummy_input = torch.randn(1, 13, img_height, img_width) | |
| out = self.features(dummy_input) | |
| fc1_input_size = out.view(1, -1).shape[1] | |
| self.classifier = nn.Sequential( | |
| nn.Flatten(), | |
| nn.Linear(fc1_input_size, 64), | |
| nn.ReLU(), | |
| nn.Linear(64, num_classes) | |
| ) | |
| def forward(self, x): | |
| x = self.features(x) | |
| x = self.classifier(x) | |
| return x |