Update README.md
Browse files
README.md
CHANGED
|
@@ -84,50 +84,16 @@ This model can be used for automated land cover classification of Sentinel-2 sat
|
|
| 84 |
import torch
|
| 85 |
import torch.nn as nn
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
super(EuroSATCNN, self).__init__()
|
| 90 |
-
self.features = nn.Sequential(
|
| 91 |
-
nn.Conv2d(13, 128, kernel_size=4, padding=1),
|
| 92 |
-
nn.ReLU(),
|
| 93 |
-
nn.MaxPool2d(kernel_size=2),
|
| 94 |
-
|
| 95 |
-
nn.Conv2d(128, 64, kernel_size=4, padding=1),
|
| 96 |
-
nn.ReLU(),
|
| 97 |
-
nn.MaxPool2d(kernel_size=2),
|
| 98 |
-
|
| 99 |
-
nn.Conv2d(64, 32, kernel_size=4, padding=1),
|
| 100 |
-
nn.ReLU(),
|
| 101 |
-
nn.MaxPool2d(kernel_size=2),
|
| 102 |
-
|
| 103 |
-
nn.Conv2d(32, 16, kernel_size=4, padding=1),
|
| 104 |
-
nn.ReLU(),
|
| 105 |
-
nn.MaxPool2d(kernel_size=2),
|
| 106 |
-
)
|
| 107 |
-
|
| 108 |
-
with torch.no_grad():
|
| 109 |
-
dummy_input = torch.randn(1, 13, img_height, img_width)
|
| 110 |
-
out = self.features(dummy_input)
|
| 111 |
-
fc1_input_size = out.view(1, -1).shape[1]
|
| 112 |
-
|
| 113 |
-
self.classifier = nn.Sequential(
|
| 114 |
-
nn.Flatten(),
|
| 115 |
-
nn.Linear(fc1_input_size, 64),
|
| 116 |
-
nn.ReLU(),
|
| 117 |
-
nn.Linear(64, num_classes)
|
| 118 |
-
)
|
| 119 |
-
|
| 120 |
-
def forward(self, x):
|
| 121 |
-
x = self.features(x)
|
| 122 |
-
x = self.classifier(x)
|
| 123 |
-
return x
|
| 124 |
|
| 125 |
# Example usage:
|
| 126 |
# Assuming num_classes is known, e.g., 10 for EuroSAT
|
| 127 |
# model = EuroSATCNN(num_classes=10)
|
|
|
|
| 128 |
# dummy_input_image = torch.randn(1, 13, 64, 64) # Batch size 1, 13 channels, 64x64
|
| 129 |
# output = model(dummy_input_image)
|
| 130 |
-
# print(output.shape) # Should be torch.Size([1, 10]) if num_classes=
|
| 131 |
|
| 132 |
|
| 133 |
---
|
|
|
|
| 84 |
import torch
|
| 85 |
import torch.nn as nn
|
| 86 |
|
| 87 |
+
from model_def import EuroSATCNN
|
| 88 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
# Example usage:
|
| 91 |
# Assuming num_classes is known, e.g., 10 for EuroSAT
|
| 92 |
# model = EuroSATCNN(num_classes=10)
|
| 93 |
+
# model.load_state_dict(torch.load("pytorch_model.bin"))
|
| 94 |
# dummy_input_image = torch.randn(1, 13, 64, 64) # Batch size 1, 13 channels, 64x64
|
| 95 |
# output = model(dummy_input_image)
|
| 96 |
+
# print(output.shape) # Should be torch.Size([1, 10]) if num_classes=20
|
| 97 |
|
| 98 |
|
| 99 |
---
|