File size: 12,617 Bytes
ce9690f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import copy
import math
import os
import shutil
from functools import partial
import wandb
import torch
torch.multiprocessing.set_sharing_strategy('file_system')
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (64000, rlimit[1]))
import yaml
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, t_to_sigma_individual
from datasets.loader import construct_loader
from utils.parsing import parse_train_args
from utils.training import train_epoch, test_epoch, loss_function, inference_epoch_fix
from utils.utils import save_yaml_file, get_optimizer_and_scheduler, get_model, ExponentialMovingAverage
def train(args, model, optimizer, scheduler, ema_weights, train_loader, val_loader, t_to_sigma, run_dir, val_dataset2):
loss_fn = partial(loss_function, tr_weight=args.tr_weight, rot_weight=args.rot_weight,
tor_weight=args.tor_weight, no_torsion=args.no_torsion, backbone_weight=args.backbone_loss_weight,
sidechain_weight=args.sidechain_loss_weight)
best_val_loss = math.inf
best_val_inference_value = math.inf if args.inference_earlystop_goal == 'min' else 0
best_val_secondary_value = math.inf if args.inference_earlystop_goal == 'min' else 0
best_epoch = 0
best_val_inference_epoch = 0
freeze_params = 0
scheduler_mode = args.inference_earlystop_goal if args.val_inference_freq is not None else 'min'
if args.scheduler == 'layer_linear_warmup':
freeze_params = args.warmup_dur * (args.num_conv_layers + 2) - 1
print("Freezing some parameters until epoch {}".format(freeze_params))
print("Starting training...")
for epoch in range(args.n_epochs):
if epoch % 5 == 0: print("Run name: ", args.run_name)
if args.scheduler == 'layer_linear_warmup' and (epoch+1) % args.warmup_dur == 0:
step = (epoch+1) // args.warmup_dur
if step < args.num_conv_layers + 2:
print("New unfreezing step")
optimizer, scheduler = get_optimizer_and_scheduler(args, model, step=step, scheduler_mode=scheduler_mode)
elif step == args.num_conv_layers + 2:
print("Unfreezing all parameters")
optimizer, scheduler = get_optimizer_and_scheduler(args, model, step=step, scheduler_mode=scheduler_mode)
ema_weights = ExponentialMovingAverage(model.parameters(), decay=args.ema_rate)
elif args.scheduler == 'linear_warmup' and epoch == args.warmup_dur:
print("Moving to plateu scheduler")
optimizer, scheduler = get_optimizer_and_scheduler(args, model, step=1, scheduler_mode=scheduler_mode,
optimizer=optimizer)
logs = {}
train_losses = train_epoch(model, train_loader, optimizer, device, t_to_sigma, loss_fn, ema_weights if epoch > freeze_params else None)
print("Epoch {}: Training loss {:.4f} tr {:.4f} rot {:.4f} tor {:.4f} sc {:.4f} lr {:.4f}"
.format(epoch, train_losses['loss'], train_losses['tr_loss'], train_losses['rot_loss'],
train_losses['tor_loss'], train_losses['sidechain_loss'], optimizer.param_groups[0]['lr']))
if epoch > freeze_params:
ema_weights.store(model.parameters())
if args.use_ema: ema_weights.copy_to(model.parameters()) # load ema parameters into model for running validation and inference
val_losses = test_epoch(model, val_loader, device, t_to_sigma, loss_fn, args.test_sigma_intervals)
print("Epoch {}: Validation loss {:.4f} tr {:.4f} rot {:.4f} tor {:.4f} sc {:.4f}"
.format(epoch, val_losses['loss'], val_losses['tr_loss'], val_losses['rot_loss'], val_losses['tor_loss'], val_losses['sidechain_loss']))
if args.val_inference_freq != None and (epoch + 1) % args.val_inference_freq == 0:
inf_dataset = [val_loader.dataset.get(i) for i in range(min(args.num_inference_complexes, val_loader.dataset.__len__()))]
inf_metrics = inference_epoch_fix(model, inf_dataset, device, t_to_sigma, args)
print("Epoch {}: Val inference rmsds_lt2 {:.3f} rmsds_lt5 {:.3f} min_rmsds_lt2 {:.3f} min_rmsds_lt5 {:.3f}"
.format(epoch, inf_metrics['rmsds_lt2'], inf_metrics['rmsds_lt5'], inf_metrics['min_rmsds_lt2'], inf_metrics['min_rmsds_lt5']))
logs.update({'valinf_' + k: v for k, v in inf_metrics.items()}, step=epoch + 1)
if args.double_val and args.val_inference_freq != None and (epoch + 1) % args.val_inference_freq == 0:
inf_dataset = [val_dataset2.get(i) for i in range(min(args.num_inference_complexes, val_dataset2.__len__()))]
inf_metrics2 = inference_epoch_fix(model, inf_dataset, device, t_to_sigma, args)
print("Epoch {}: Val inference on second validation rmsds_lt2 {:.3f} rmsds_lt5 {:.3f} min_rmsds_lt2 {:.3f} min_rmsds_lt5 {:.3f}"
.format(epoch, inf_metrics2['rmsds_lt2'], inf_metrics2['rmsds_lt5'], inf_metrics2['min_rmsds_lt2'], inf_metrics2['min_rmsds_lt5']))
logs.update({'valinf2_' + k: v for k, v in inf_metrics2.items()}, step=epoch + 1)
logs.update({'valinfcomb_' + k: (v + inf_metrics[k])/2 for k, v in inf_metrics2.items()}, step=epoch + 1)
if args.train_inference_freq != None and (epoch + 1) % args.train_inference_freq == 0:
inf_dataset = [train_loader.dataset.get(i) for i in range(min(min(args.num_inference_complexes, 300), train_loader.dataset.__len__()))]
inf_metrics = inference_epoch_fix(model, inf_dataset, device, t_to_sigma, args)
print("Epoch {}: Train inference rmsds_lt2 {:.3f} rmsds_lt5 {:.3f} min_rmsds_lt2 {:.3f} min_rmsds_lt5 {:.3f}"
.format(epoch, inf_metrics['rmsds_lt2'], inf_metrics['rmsds_lt5'], inf_metrics['min_rmsds_lt2'], inf_metrics['min_rmsds_lt5']))
logs.update({'traininf_' + k: v for k, v in inf_metrics.items()}, step=epoch + 1)
if epoch > freeze_params:
if not args.use_ema: ema_weights.copy_to(model.parameters())
ema_state_dict = copy.deepcopy(model.module.state_dict() if device.type == 'cuda' else model.state_dict())
ema_weights.restore(model.parameters())
if args.wandb:
logs.update({'train_' + k: v for k, v in train_losses.items()})
logs.update({'val_' + k: v for k, v in val_losses.items()})
logs['current_lr'] = optimizer.param_groups[0]['lr']
wandb.log(logs, step=epoch + 1)
state_dict = model.module.state_dict() if device.type == 'cuda' else model.state_dict()
if args.inference_earlystop_metric in logs.keys() and \
(args.inference_earlystop_goal == 'min' and logs[args.inference_earlystop_metric] <= best_val_inference_value or
args.inference_earlystop_goal == 'max' and logs[args.inference_earlystop_metric] >= best_val_inference_value):
best_val_inference_value = logs[args.inference_earlystop_metric]
best_val_inference_epoch = epoch
torch.save(state_dict, os.path.join(run_dir, 'best_inference_epoch_model.pt'))
if epoch > freeze_params:
torch.save(ema_state_dict, os.path.join(run_dir, 'best_ema_inference_epoch_model.pt'))
if args.inference_secondary_metric is not None and args.inference_secondary_metric in logs.keys() and \
(args.inference_earlystop_goal == 'min' and logs[args.inference_secondary_metric] <= best_val_secondary_value or
args.inference_earlystop_goal == 'max' and logs[args.inference_secondary_metric] >= best_val_secondary_value):
best_val_secondary_value = logs[args.inference_secondary_metric]
if epoch > freeze_params:
torch.save(ema_state_dict, os.path.join(run_dir, 'best_ema_secondary_epoch_model.pt'))
if val_losses['loss'] <= best_val_loss:
best_val_loss = val_losses['loss']
best_epoch = epoch
torch.save(state_dict, os.path.join(run_dir, 'best_model.pt'))
if epoch > freeze_params:
torch.save(ema_state_dict, os.path.join(run_dir, 'best_ema_model.pt'))
if args.save_model_freq is not None and (epoch + 1) % args.save_model_freq == 0:
shutil.copyfile(os.path.join(run_dir, 'best_model.pt'),
os.path.join(run_dir, f'epoch{epoch+1}_best_model.pt'))
if scheduler:
if epoch < freeze_params or (args.scheduler == 'linear_warmup' and epoch < args.warmup_dur):
scheduler.step()
elif args.val_inference_freq is not None:
scheduler.step(best_val_inference_value)
else:
scheduler.step(val_losses['loss'])
torch.save({
'epoch': epoch,
'model': state_dict,
'optimizer': optimizer.state_dict(),
'ema_weights': ema_weights.state_dict(),
}, os.path.join(run_dir, 'last_model.pt'))
print("Best Validation Loss {} on Epoch {}".format(best_val_loss, best_epoch))
print("Best inference metric {} on Epoch {}".format(best_val_inference_value, best_val_inference_epoch))
def main_function():
args = parse_train_args()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
args.config = args.config.name
assert (args.inference_earlystop_goal == 'max' or args.inference_earlystop_goal == 'min')
if args.val_inference_freq is not None and args.scheduler is not None:
assert (args.scheduler_patience > args.val_inference_freq) # otherwise we will just stop training after args.scheduler_patience epochs
if args.cudnn_benchmark:
torch.backends.cudnn.benchmark = True
if args.wandb:
wandb.init(
entity='',
settings=wandb.Settings(start_method="fork"),
project=args.project,
name=args.run_name,
config=args
)
# construct loader
t_to_sigma = partial(t_to_sigma_compl, args=args)
train_loader, val_loader, val_dataset2 = construct_loader(args, t_to_sigma, device)
model = get_model(args, device, t_to_sigma=t_to_sigma)
optimizer, scheduler = get_optimizer_and_scheduler(args, model, scheduler_mode=args.inference_earlystop_goal if args.val_inference_freq is not None else 'min')
ema_weights = ExponentialMovingAverage(model.parameters(),decay=args.ema_rate)
if args.restart_dir:
try:
dict = torch.load(f'{args.restart_dir}/{args.restart_ckpt}.pt', map_location=torch.device('cpu'))
if args.restart_lr is not None: dict['optimizer']['param_groups'][0]['lr'] = args.restart_lr
optimizer.load_state_dict(dict['optimizer'])
model.module.load_state_dict(dict['model'], strict=True)
if hasattr(args, 'ema_rate'):
ema_weights.load_state_dict(dict['ema_weights'], device=device)
print("Restarting from epoch", dict['epoch'])
except Exception as e:
print("Exception", e)
dict = torch.load(f'{args.restart_dir}/best_model.pt', map_location=torch.device('cpu'))
model.module.load_state_dict(dict, strict=True)
print("Due to exception had to take the best epoch and no optimiser")
elif args.pretrain_dir:
dict = torch.load(f'{args.pretrain_dir}/{args.pretrain_ckpt}.pt', map_location=torch.device('cpu'))
model.module.load_state_dict(dict, strict=True)
print("Using pretrained model", f'{args.pretrain_dir}/{args.pretrain_ckpt}.pt')
numel = sum([p.numel() for p in model.parameters()])
print('Model with', numel, 'parameters')
if args.wandb:
wandb.log({'numel': numel})
# record parameters
run_dir = os.path.join(args.log_dir, args.run_name)
yaml_file_name = os.path.join(run_dir, 'model_parameters.yml')
save_yaml_file(yaml_file_name, args.__dict__)
args.device = device
train(args, model, optimizer, scheduler, ema_weights, train_loader, val_loader, t_to_sigma, run_dir, val_dataset2)
if __name__ == '__main__':
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
main_function()
|