|
|
from collections.abc import Mapping, Sequence |
|
|
from typing import List, Optional, Union |
|
|
|
|
|
import torch.utils.data |
|
|
from torch.utils.data.dataloader import default_collate |
|
|
|
|
|
from torch_geometric.data import Batch, Dataset |
|
|
from torch_geometric.data.data import BaseData |
|
|
|
|
|
|
|
|
class Collater: |
|
|
def __init__(self, follow_batch, exclude_keys): |
|
|
self.follow_batch = follow_batch |
|
|
self.exclude_keys = exclude_keys |
|
|
|
|
|
def __call__(self, batch): |
|
|
batch = [x for x in batch if x is not None] |
|
|
elem = batch[0] |
|
|
if isinstance(elem, BaseData): |
|
|
return Batch.from_data_list(batch, self.follow_batch, |
|
|
self.exclude_keys) |
|
|
elif isinstance(elem, torch.Tensor): |
|
|
return default_collate(batch) |
|
|
elif isinstance(elem, float): |
|
|
return torch.tensor(batch, dtype=torch.float) |
|
|
elif isinstance(elem, int): |
|
|
return torch.tensor(batch) |
|
|
elif isinstance(elem, str): |
|
|
return batch |
|
|
elif isinstance(elem, Mapping): |
|
|
return {key: self([data[key] for data in batch]) for key in elem} |
|
|
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): |
|
|
return type(elem)(*(self(s) for s in zip(*batch))) |
|
|
elif isinstance(elem, Sequence) and not isinstance(elem, str): |
|
|
return [self(s) for s in zip(*batch)] |
|
|
|
|
|
raise TypeError(f'DataLoader found invalid type: {type(elem)}') |
|
|
|
|
|
def collate(self, batch): |
|
|
return self(batch) |
|
|
|
|
|
|
|
|
class DataLoader(torch.utils.data.DataLoader): |
|
|
r"""A data loader which merges data objects from a |
|
|
:class:`torch_geometric.data.Dataset` to a mini-batch. |
|
|
Data objects can be either of type :class:`~torch_geometric.data.Data` or |
|
|
:class:`~torch_geometric.data.HeteroData`. |
|
|
|
|
|
Args: |
|
|
dataset (Dataset): The dataset from which to load the data. |
|
|
batch_size (int, optional): How many samples per batch to load. |
|
|
(default: :obj:`1`) |
|
|
shuffle (bool, optional): If set to :obj:`True`, the data will be |
|
|
reshuffled at every epoch. (default: :obj:`False`) |
|
|
follow_batch (List[str], optional): Creates assignment batch |
|
|
vectors for each key in the list. (default: :obj:`None`) |
|
|
exclude_keys (List[str], optional): Will exclude each key in the |
|
|
list. (default: :obj:`None`) |
|
|
**kwargs (optional): Additional arguments of |
|
|
:class:`torch.utils.data.DataLoader`. |
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
dataset: Union[Dataset, List[BaseData]], |
|
|
batch_size: int = 1, |
|
|
shuffle: bool = False, |
|
|
follow_batch: Optional[List[str]] = None, |
|
|
exclude_keys: Optional[List[str]] = None, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
if 'collate_fn' in kwargs: |
|
|
del kwargs['collate_fn'] |
|
|
|
|
|
|
|
|
self.follow_batch = follow_batch |
|
|
self.exclude_keys = exclude_keys |
|
|
|
|
|
super().__init__( |
|
|
dataset, |
|
|
batch_size, |
|
|
shuffle, |
|
|
collate_fn=Collater(follow_batch, exclude_keys), |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
def collate_fn(data_list): |
|
|
data_list = [x for x in data_list if x is not None] |
|
|
return data_list |
|
|
|
|
|
|
|
|
class DataListLoader(torch.utils.data.DataLoader): |
|
|
def __init__(self, dataset: Union[Dataset, List[BaseData]], |
|
|
batch_size: int = 1, shuffle: bool = False, **kwargs): |
|
|
if 'collate_fn' in kwargs: |
|
|
del kwargs['collate_fn'] |
|
|
|
|
|
super().__init__(dataset, batch_size=batch_size, shuffle=shuffle, |
|
|
collate_fn=collate_fn, **kwargs) |
|
|
|
|
|
|