|
|
import torch |
|
|
from torch import nn |
|
|
|
|
|
ACTIVATIONS = { |
|
|
'relu': nn.ReLU, |
|
|
'silu': nn.SiLU |
|
|
} |
|
|
|
|
|
|
|
|
def FCBlock(in_dim, hidden_dim, out_dim, layers, dropout, activation='relu'): |
|
|
activation = ACTIVATIONS[activation] |
|
|
assert layers >= 2 |
|
|
sequential = [nn.Linear(in_dim, hidden_dim), activation(), nn.Dropout(dropout)] |
|
|
for i in range(layers - 2): |
|
|
sequential += [nn.Linear(hidden_dim, hidden_dim), activation(), nn.Dropout(dropout)] |
|
|
sequential += [nn.Linear(hidden_dim, out_dim)] |
|
|
return nn.Sequential(*sequential) |
|
|
|
|
|
|
|
|
class GaussianSmearing(torch.nn.Module): |
|
|
|
|
|
def __init__(self, start=0.0, stop=5.0, num_gaussians=50): |
|
|
super().__init__() |
|
|
offset = torch.linspace(start, stop, num_gaussians) |
|
|
self.coeff = -0.5 / (offset[1] - offset[0]).item() ** 2 |
|
|
self.register_buffer('offset', offset) |
|
|
|
|
|
def forward(self, dist): |
|
|
dist = dist.view(-1, 1) - self.offset.view(1, -1) |
|
|
return torch.exp(self.coeff * torch.pow(dist, 2)) |
|
|
|
|
|
|
|
|
class AtomEncoder(torch.nn.Module): |
|
|
def __init__(self, emb_dim, feature_dims, sigma_embed_dim, lm_embedding_dim=0): |
|
|
""" |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
emb_dim |
|
|
feature_dims |
|
|
first element of feature_dims tuple is a list with the length of each categorical feature, |
|
|
and the second is the number of scalar features |
|
|
sigma_embed_dim |
|
|
lm_embedding_dim |
|
|
""" |
|
|
|
|
|
super(AtomEncoder, self).__init__() |
|
|
self.atom_embedding_list = torch.nn.ModuleList() |
|
|
self.num_categorical_features = len(feature_dims[0]) |
|
|
self.additional_features_dim = feature_dims[1] + sigma_embed_dim + lm_embedding_dim |
|
|
for i, dim in enumerate(feature_dims[0]): |
|
|
emb = torch.nn.Embedding(dim, emb_dim) |
|
|
torch.nn.init.xavier_uniform_(emb.weight.data) |
|
|
self.atom_embedding_list.append(emb) |
|
|
|
|
|
if self.additional_features_dim > 0: |
|
|
self.additional_features_embedder = torch.nn.Linear(self.additional_features_dim + emb_dim, emb_dim) |
|
|
|
|
|
def forward(self, x): |
|
|
x_embedding = 0 |
|
|
assert x.shape[1] == self.num_categorical_features + self.additional_features_dim |
|
|
for i in range(self.num_categorical_features): |
|
|
x_embedding += self.atom_embedding_list[i](x[:, i].long()) |
|
|
|
|
|
if self.additional_features_dim > 0: |
|
|
x_embedding = self.additional_features_embedder(torch.cat([x_embedding, x[:, self.num_categorical_features:]], axis=1)) |
|
|
return x_embedding |
|
|
|
|
|
|
|
|
class OldAtomEncoder(torch.nn.Module): |
|
|
|
|
|
def __init__(self, emb_dim, feature_dims, sigma_embed_dim, lm_embedding_type=None): |
|
|
""" |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
emb_dim |
|
|
feature_dims |
|
|
first element of feature_dims tuple is a list with the length of each categorical feature, |
|
|
and the second is the number of scalar features |
|
|
sigma_embed_dim |
|
|
lm_embedding_type |
|
|
""" |
|
|
|
|
|
super(OldAtomEncoder, self).__init__() |
|
|
self.atom_embedding_list = torch.nn.ModuleList() |
|
|
self.num_categorical_features = len(feature_dims[0]) |
|
|
self.num_scalar_features = feature_dims[1] + sigma_embed_dim |
|
|
self.lm_embedding_type = lm_embedding_type |
|
|
for i, dim in enumerate(feature_dims[0]): |
|
|
emb = torch.nn.Embedding(dim, emb_dim) |
|
|
torch.nn.init.xavier_uniform_(emb.weight.data) |
|
|
self.atom_embedding_list.append(emb) |
|
|
|
|
|
if self.num_scalar_features > 0: |
|
|
self.linear = torch.nn.Linear(self.num_scalar_features, emb_dim) |
|
|
if self.lm_embedding_type is not None: |
|
|
if self.lm_embedding_type == 'esm': |
|
|
self.lm_embedding_dim = 1280 |
|
|
else: raise ValueError('LM Embedding type was not correctly determined. LM embedding type: ', self.lm_embedding_type) |
|
|
self.lm_embedding_layer = torch.nn.Linear(self.lm_embedding_dim + emb_dim, emb_dim) |
|
|
|
|
|
def forward(self, x): |
|
|
x_embedding = 0 |
|
|
if self.lm_embedding_type is not None: |
|
|
assert x.shape[1] == self.num_categorical_features + self.num_scalar_features + self.lm_embedding_dim |
|
|
else: |
|
|
assert x.shape[1] == self.num_categorical_features + self.num_scalar_features |
|
|
for i in range(self.num_categorical_features): |
|
|
x_embedding += self.atom_embedding_list[i](x[:, i].long()) |
|
|
|
|
|
if self.num_scalar_features > 0: |
|
|
x_embedding += self.linear(x[:, self.num_categorical_features:self.num_categorical_features + self.num_scalar_features]) |
|
|
if self.lm_embedding_type is not None: |
|
|
x_embedding = self.lm_embedding_layer(torch.cat([x_embedding, x[:, -self.lm_embedding_dim:]], axis=1)) |
|
|
return x_embedding |
|
|
|