Model save
Browse files
README.md
CHANGED
|
@@ -11,107 +11,49 @@ model-index:
|
|
| 11 |
results: []
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
input_text = "์ํํธ ์ฌ๊ฑด์ถ์ ๋ํด ์๋ ค์ค."
|
| 54 |
-
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 55 |
-
|
| 56 |
-
outputs = model.generate(**input_ids, max_new_tokens=512)
|
| 57 |
-
print(tokenizer.decode(outputs[0]))
|
| 58 |
-
```
|
| 59 |
-
|
| 60 |
-
### Inference on GPU with embedded function example
|
| 61 |
-
๋ด์ฅ๋ ํจ์๋ก ๋ค์ด๋ฒ ๊ฒ์ API๋ฅผ ํตํด RAG๋ฅผ ์ง์๋ฐ์ต๋๋ค.
|
| 62 |
-
```python
|
| 63 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 64 |
-
from utils import generate
|
| 65 |
-
|
| 66 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
| 67 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 68 |
-
"aiqwe/gemma-2b-it-example-v1",
|
| 69 |
-
device_map="cuda",
|
| 70 |
-
torch_dtype=torch.bfloat16,
|
| 71 |
-
attn_implementation="flash_attention_2"
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
rag_config = {
|
| 75 |
-
"api_client_id": userdata.get('NAVER_API_ID'),
|
| 76 |
-
"api_client_secret": userdata.get('NAVER_API_SECRET')
|
| 77 |
-
}
|
| 78 |
-
completion = generate(
|
| 79 |
-
model=model,
|
| 80 |
-
tokenizer=tokenizer,
|
| 81 |
-
query=query,
|
| 82 |
-
max_new_tokens=512,
|
| 83 |
-
rag=True,
|
| 84 |
-
rag_config=rag_config
|
| 85 |
-
)
|
| 86 |
-
print(completion)
|
| 87 |
-
```
|
| 88 |
-
|
| 89 |
-
## Chat Template
|
| 90 |
-
Gemma ๋ชจ๋ธ์ Chat Template์ ์ฌ์ฉํฉ๋๋ค.
|
| 91 |
-
[gemma-2b-it Chat Template](https://huggingface.co/google/gemma-2b-it#chat-template)
|
| 92 |
-
|
| 93 |
-
## Training Spec
|
| 94 |
-
ํ์ต์ ๊ตฌ๊ธ ์ฝ๋ฉ L4 Single GPU๋ฅผ ํ์ฉํ์์ต๋๋ค.
|
| 95 |
-
|
| 96 |
-
| ๊ตฌ๋ถ | ๋ด์ฉ |
|
| 97 |
-
|---------------|---------------------|
|
| 98 |
-
| ํ์ต ํ๊ฒฝ | Google Colab |
|
| 99 |
-
| GPU | L4(22.5GB) |
|
| 100 |
-
| ํ์ต์ VRAM | ์ฝ 17GB ์ฌ์ฉ |
|
| 101 |
-
| dtype | bfloat16 |
|
| 102 |
-
| Attention | flash attention2 |
|
| 103 |
-
| Tuning | Lora(r=4, alpha=32) |
|
| 104 |
-
| Learning Rate | 5e-5 |
|
| 105 |
-
| LRScheduler | Cosine |
|
| 106 |
-
| Optimizer | adamw_torch_fused |
|
| 107 |
|
| 108 |
### Framework versions
|
| 109 |
|
| 110 |
- PEFT 0.10.0
|
| 111 |
- Transformers 4.40.1
|
| 112 |
- Pytorch 2.2.1+cu121
|
| 113 |
-
- Datasets 2.19.
|
| 114 |
-
- Tokenizers 0.19.1
|
| 115 |
-
|
| 116 |
-
## Github Profile
|
| 117 |
-
Github : https://github.com/aiqwe
|
|
|
|
| 11 |
results: []
|
| 12 |
---
|
| 13 |
|
| 14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 15 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
+
|
| 17 |
+
# gemma-2b-it-example-v1
|
| 18 |
+
|
| 19 |
+
This model is a fine-tuned version of [google/gemma-1.1-2b-it](https://huggingface.co/google/gemma-1.1-2b-it) on an unknown dataset.
|
| 20 |
+
|
| 21 |
+
## Model description
|
| 22 |
+
|
| 23 |
+
More information needed
|
| 24 |
+
|
| 25 |
+
## Intended uses & limitations
|
| 26 |
+
|
| 27 |
+
More information needed
|
| 28 |
+
|
| 29 |
+
## Training and evaluation data
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Training procedure
|
| 34 |
+
|
| 35 |
+
### Training hyperparameters
|
| 36 |
+
|
| 37 |
+
The following hyperparameters were used during training:
|
| 38 |
+
- learning_rate: 5e-05
|
| 39 |
+
- train_batch_size: 8
|
| 40 |
+
- eval_batch_size: 8
|
| 41 |
+
- seed: 42
|
| 42 |
+
- gradient_accumulation_steps: 2
|
| 43 |
+
- total_train_batch_size: 16
|
| 44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 45 |
+
- lr_scheduler_type: cosine
|
| 46 |
+
- lr_scheduler_warmup_ratio: 0.05
|
| 47 |
+
- num_epochs: 20
|
| 48 |
+
|
| 49 |
+
### Training results
|
| 50 |
+
|
| 51 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
### Framework versions
|
| 54 |
|
| 55 |
- PEFT 0.10.0
|
| 56 |
- Transformers 4.40.1
|
| 57 |
- Pytorch 2.2.1+cu121
|
| 58 |
+
- Datasets 2.19.1
|
| 59 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|