Update README.md
Browse files
README.md
CHANGED
|
@@ -9,51 +9,117 @@ base_model: google/gemma-1.1-2b-it
|
|
| 9 |
model-index:
|
| 10 |
- name: gemma-2b-it-example-v1
|
| 11 |
results: []
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 15 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
model-index:
|
| 10 |
- name: gemma-2b-it-example-v1
|
| 11 |
results: []
|
| 12 |
+
language:
|
| 13 |
+
- ko
|
| 14 |
---
|
| 15 |
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
## Model Description
|
| 18 |
+
**git hub** : [https://github.com/aiqwe/instruction-tuning-with-rag-example](https://github.com/aiqwe/instruction-tuning-with-rag-example)
|
| 19 |
+
Instruction Tuning์ ํ์ต์ ์ํด ์์๋ก ํ์ตํ ๋ชจ๋ธ์
๋๋ค.
|
| 20 |
+
[gemma-2b-it](https://huggingface.co/google/gemma-2b-it) ๋ชจ๋ธ์ ๊ธฐ๋ฐ์ผ๋ก ์ฝ 1๋ง๊ฐ์ ๋ถ๋์ฐ ๊ด๋ จ Instruction ๋ฐ์ดํฐ์
์ ํ์ตํ์์ต๋๋ค.
|
| 21 |
+
ํ์ต ์ฝ๋๋ ์ git hub๋ฅผ ์ฐธ์กฐํด์ฃผ์ธ์.
|
| 22 |
+
|
| 23 |
+
## Usage
|
| 24 |
+
### Inference on GPU example
|
| 25 |
+
```python
|
| 26 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 27 |
+
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
| 29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 30 |
+
"aiqwe/gemma-2b-it-example-v1",
|
| 31 |
+
device_map="cuda",
|
| 32 |
+
torch_dtype=torch.bfloat16,
|
| 33 |
+
attn_implementation="flash_attention_2"
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
input_text = "์ํํธ ์ฌ๊ฑด์ถ์ ๋ํด ์๋ ค์ค."
|
| 37 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 38 |
+
|
| 39 |
+
outputs = model.generate(**input_ids, max_new_tokens=512)
|
| 40 |
+
print(tokenizer.decode(outputs[0]))
|
| 41 |
+
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
### Inference on CPU example
|
| 46 |
+
```python
|
| 47 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 48 |
+
|
| 49 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
| 50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 51 |
+
"aiqwe/gemma-2b-it-example-v1",
|
| 52 |
+
device_map="cpu",
|
| 53 |
+
torch_dtype=torch.bfloat16
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
input_text = "์ํํธ ์ฌ๊ฑด์ถ์ ๋ํด ์๋ ค์ค."
|
| 57 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 58 |
+
|
| 59 |
+
outputs = model.generate(**input_ids, max_new_tokens=512)
|
| 60 |
+
print(tokenizer.decode(outputs[0]))
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
### Inference on GPU with embedded function example
|
| 64 |
+
๋ด์ฅ๋ ํจ์๋ก ๋ค์ด๋ฒ ๊ฒ์ API๋ฅผ ํตํด RAG๋ฅผ ์ง์๋ฐ์ต๋๋ค.
|
| 65 |
+
```python
|
| 66 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 67 |
+
from utils import generate
|
| 68 |
+
|
| 69 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
| 70 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 71 |
+
"aiqwe/gemma-2b-it-example-v1",
|
| 72 |
+
device_map="cuda",
|
| 73 |
+
torch_dtype=torch.bfloat16,
|
| 74 |
+
attn_implementation="flash_attention_2"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
rag_config = {
|
| 78 |
+
"api_client_id": userdata.get('NAVER_API_ID'),
|
| 79 |
+
"api_client_secret": userdata.get('NAVER_API_SECRET')
|
| 80 |
+
}
|
| 81 |
+
completion = generate(
|
| 82 |
+
model=model,
|
| 83 |
+
tokenizer=tokenizer,
|
| 84 |
+
query=query,
|
| 85 |
+
max_new_tokens=512,
|
| 86 |
+
rag=True,
|
| 87 |
+
rag_config=rag_config
|
| 88 |
+
)
|
| 89 |
+
print(completion)
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
## Chat Template
|
| 93 |
+
Gemma ๋ชจ๋ธ์ Chat Template์ ์ฌ์ฉํฉ๋๋ค.
|
| 94 |
+
[gemma-2b-it Chat Template](https://huggingface.co/google/gemma-2b-it#chat-template)
|
| 95 |
+
```python
|
| 96 |
+
input_text = "์ํํธ ์ฌ๊ฑด์ถ์ ๋ํด ์๋ ค์ค."
|
| 97 |
+
|
| 98 |
+
input_text = tokenizer.apply_chat_template(
|
| 99 |
+
conversation=[
|
| 100 |
+
{"role": "user", "content": input_text}
|
| 101 |
+
],
|
| 102 |
+
add_generate_prompt=True,
|
| 103 |
+
return_tensors="pt"
|
| 104 |
+
).to(model.device)
|
| 105 |
+
|
| 106 |
+
outputs = model.generate(input_text, max_new_tokens=512, repetition_penalty = 1.5)
|
| 107 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=False))
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
## Training information
|
| 111 |
+
ํ์ต์ ๊ตฌ๊ธ ์ฝ๋ฉ L4 Single GPU๋ฅผ ํ์ฉํ์์ต๋๋ค.
|
| 112 |
+
|
| 113 |
+
| ๊ตฌ๋ถ | ๋ด์ฉ |
|
| 114 |
+
|-----------------------------|------------------|
|
| 115 |
+
| ํ๊ฒฝ | Google Colab |
|
| 116 |
+
| GPU | L4(22.5GB) |
|
| 117 |
+
| ์ฌ์ฉ VRAM | ์ฝ 13.8GB |
|
| 118 |
+
| dtype | bfloat16 |
|
| 119 |
+
| Attention | flash attention2 |
|
| 120 |
+
| Tuning | Lora(r=4, alpha=32) |
|
| 121 |
+
| Learning Rate | 1e-4 |
|
| 122 |
+
| LRScheduler | Cosine |
|
| 123 |
+
| Optimizer | adamw_torch_fused |
|
| 124 |
+
| batch_size | 4 |
|
| 125 |
+
| gradient_accumulation_steps | 2 |
|