--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: the_first_model_develop_wnut results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5735512630014858 - name: Recall type: recall value: 0.3577386468952734 - name: F1 type: f1 value: 0.44063926940639264 - name: Accuracy type: accuracy value: 0.9459621221837459 --- # the_first_model_develop_wnut This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.3410 - Precision: 0.5736 - Recall: 0.3577 - F1: 0.4406 - Accuracy: 0.9460 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 107 | 0.2753 | 0.6224 | 0.2734 | 0.3799 | 0.9402 | | No log | 2.0 | 214 | 0.2722 | 0.5637 | 0.3197 | 0.4080 | 0.9447 | | No log | 3.0 | 321 | 0.3145 | 0.5789 | 0.3401 | 0.4285 | 0.9458 | | No log | 4.0 | 428 | 0.3199 | 0.5218 | 0.3550 | 0.4225 | 0.9449 | | 0.0914 | 5.0 | 535 | 0.3410 | 0.5736 | 0.3577 | 0.4406 | 0.9460 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.8.0+cu126 - Datasets 3.6.0 - Tokenizers 0.22.0