--- language: en license: apache-2.0 tags: - financial-sentiment - sentiment-analysis - finance - nlp - transformers datasets: - zeroshot/twitter-financial-news-sentiment metrics: - accuracy - f1 model-index: - name: financial-sentiment-improved results: - task: type: text-classification name: Financial Sentiment Analysis dataset: name: Twitter Financial News Sentiment type: zeroshot/twitter-financial-news-sentiment metrics: - type: accuracy value: 0.847 - type: f1 value: 0.845 --- # financial-sentiment-improved This model is a fine-tuned version of DistilBERT for financial sentiment analysis. It has been trained on financial news and social media data to classify text into three sentiment categories: Bearish (negative), Neutral, and Bullish (positive). ## Model Performance - **Accuracy**: 0.847 - **F1 Score**: 0.845 ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained("codealchemist01/financial-sentiment-improved") model = AutoModelForSequenceClassification.from_pretrained("codealchemist01/financial-sentiment-improved") def predict_sentiment(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) labels = ["Bearish", "Neutral", "Bullish"] predicted_class = torch.argmax(predictions, dim=-1).item() confidence = predictions[0][predicted_class].item() return { "label": labels[predicted_class], "confidence": confidence } # Example result = predict_sentiment("The stock market is showing strong growth today") print(result) ``` ## Training Details This model was trained using advanced techniques including: - Balanced dataset sampling - Custom loss functions - Learning rate scheduling - Early stopping ## Intended Use This model is designed for financial sentiment analysis tasks, including: - Social media sentiment monitoring - News sentiment analysis - Market sentiment tracking - Financial document analysis