Upload 2 files
Browse files- app.py +144 -0
- vox-adv-cpk.pth +3 -0
app.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import subprocess
|
| 3 |
+
|
| 4 |
+
import yaml
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
import imageio
|
| 8 |
+
import numpy as np
|
| 9 |
+
from skimage.transform import resize
|
| 10 |
+
from skimage import img_as_ubyte
|
| 11 |
+
import torch
|
| 12 |
+
from sync_batchnorm import DataParallelWithCallback
|
| 13 |
+
|
| 14 |
+
from modules.generator import OcclusionAwareGenerator
|
| 15 |
+
from modules.keypoint_detector import KPDetector
|
| 16 |
+
from animate import normalize_kp
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def load_checkpoints(config_path, checkpoint_path, cpu=False):
|
| 20 |
+
|
| 21 |
+
with open(config_path) as f:
|
| 22 |
+
config = yaml.load(f)
|
| 23 |
+
|
| 24 |
+
generator = OcclusionAwareGenerator(
|
| 25 |
+
**config["model_params"]["generator_params"], **config["model_params"]["common_params"]
|
| 26 |
+
)
|
| 27 |
+
if not cpu:
|
| 28 |
+
generator.cuda()
|
| 29 |
+
|
| 30 |
+
kp_detector = KPDetector(**config["model_params"]["kp_detector_params"], **config["model_params"]["common_params"])
|
| 31 |
+
if not cpu:
|
| 32 |
+
kp_detector.cuda()
|
| 33 |
+
|
| 34 |
+
if cpu:
|
| 35 |
+
checkpoint = torch.load(checkpoint_path, map_location=torch.device("cpu"))
|
| 36 |
+
else:
|
| 37 |
+
checkpoint = torch.load(checkpoint_path)
|
| 38 |
+
|
| 39 |
+
generator.load_state_dict(checkpoint["generator"])
|
| 40 |
+
kp_detector.load_state_dict(checkpoint["kp_detector"])
|
| 41 |
+
|
| 42 |
+
if not cpu:
|
| 43 |
+
generator = DataParallelWithCallback(generator)
|
| 44 |
+
kp_detector = DataParallelWithCallback(kp_detector)
|
| 45 |
+
|
| 46 |
+
generator.eval()
|
| 47 |
+
kp_detector.eval()
|
| 48 |
+
|
| 49 |
+
return generator, kp_detector
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def make_animation(
|
| 53 |
+
source_image, driving_video, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False
|
| 54 |
+
):
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
predictions = []
|
| 57 |
+
source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
|
| 58 |
+
if not cpu:
|
| 59 |
+
source = source.cuda()
|
| 60 |
+
driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
|
| 61 |
+
kp_source = kp_detector(source)
|
| 62 |
+
kp_driving_initial = kp_detector(driving[:, :, 0])
|
| 63 |
+
|
| 64 |
+
for frame_idx in tqdm(range(driving.shape[2])):
|
| 65 |
+
driving_frame = driving[:, :, frame_idx]
|
| 66 |
+
if not cpu:
|
| 67 |
+
driving_frame = driving_frame.cuda()
|
| 68 |
+
kp_driving = kp_detector(driving_frame)
|
| 69 |
+
kp_norm = normalize_kp(
|
| 70 |
+
kp_source=kp_source,
|
| 71 |
+
kp_driving=kp_driving,
|
| 72 |
+
kp_driving_initial=kp_driving_initial,
|
| 73 |
+
use_relative_movement=relative,
|
| 74 |
+
use_relative_jacobian=relative,
|
| 75 |
+
adapt_movement_scale=adapt_movement_scale,
|
| 76 |
+
)
|
| 77 |
+
out = generator(source, kp_source=kp_source, kp_driving=kp_norm)
|
| 78 |
+
|
| 79 |
+
predictions.append(np.transpose(out["prediction"].data.cpu().numpy(), [0, 2, 3, 1])[0])
|
| 80 |
+
return predictions
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def inference(video, image):
|
| 84 |
+
# trim video to 8 seconds
|
| 85 |
+
cmd = f"ffmpeg -y -ss 00:00:00 -i {video} -to 00:00:08 -c copy video_input.mp4"
|
| 86 |
+
subprocess.run(cmd.split())
|
| 87 |
+
video = "video_input.mp4"
|
| 88 |
+
|
| 89 |
+
source_image = imageio.imread(image)
|
| 90 |
+
reader = imageio.get_reader(video)
|
| 91 |
+
fps = reader.get_meta_data()["fps"]
|
| 92 |
+
driving_video = []
|
| 93 |
+
try:
|
| 94 |
+
for im in reader:
|
| 95 |
+
driving_video.append(im)
|
| 96 |
+
except RuntimeError:
|
| 97 |
+
pass
|
| 98 |
+
reader.close()
|
| 99 |
+
|
| 100 |
+
source_image = resize(source_image, (256, 256))[..., :3]
|
| 101 |
+
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
|
| 102 |
+
|
| 103 |
+
predictions = make_animation(
|
| 104 |
+
source_image,
|
| 105 |
+
driving_video,
|
| 106 |
+
generator,
|
| 107 |
+
kp_detector,
|
| 108 |
+
relative=True,
|
| 109 |
+
adapt_movement_scale=True,
|
| 110 |
+
cpu=True,
|
| 111 |
+
)
|
| 112 |
+
imageio.mimsave("result.mp4", [img_as_ubyte(frame) for frame in predictions], fps=fps)
|
| 113 |
+
imageio.mimsave("driving.mp4", [img_as_ubyte(frame) for frame in driving_video], fps=fps)
|
| 114 |
+
cmd = f"ffmpeg -y -i result.mp4 -i {video} -c copy -map 0:0 -map 1:1 -shortest out.mp4"
|
| 115 |
+
subprocess.run(cmd.split())
|
| 116 |
+
cmd = "ffmpeg -y -i driving.mp4 -i out.mp4 -filter_complex hstack=inputs=2 final.mp4"
|
| 117 |
+
subprocess.run(cmd.split())
|
| 118 |
+
return "final.mp4"
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
title = "First Order Motion Model"
|
| 122 |
+
description = "Gradio demo for First Order Motion Model. Read more at the links below. Upload a video file (cropped to face), a facial image and have fun :D. Please note that your video will be trimmed to first 8 seconds."
|
| 123 |
+
article = "<p style='text-align: center'><a href='https://papers.nips.cc/paper/2019/file/31c0b36aef265d9221af80872ceb62f9-Paper.pdf' target='_blank'>First Order Motion Model for Image Animation</a> | <a href='https://github.com/AliaksandrSiarohin/first-order-model' target='_blank'>Github Repo</a></p>"
|
| 124 |
+
examples = [["bella_porch.mp4", "julien.png"]]
|
| 125 |
+
generator, kp_detector = load_checkpoints(
|
| 126 |
+
config_path="config/vox-256.yaml",
|
| 127 |
+
checkpoint_path="weights/vox-adv-cpk.pth.tar",
|
| 128 |
+
cpu=True,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
iface = gr.Interface(
|
| 132 |
+
inference,
|
| 133 |
+
[
|
| 134 |
+
gr.inputs.Video(type="mp4"),
|
| 135 |
+
gr.inputs.Image(type="filepath"),
|
| 136 |
+
],
|
| 137 |
+
outputs=gr.outputs.Video(label="Output Video"),
|
| 138 |
+
examples=examples,
|
| 139 |
+
enable_queue=True,
|
| 140 |
+
title=title,
|
| 141 |
+
article=article,
|
| 142 |
+
description=description,
|
| 143 |
+
)
|
| 144 |
+
iface.launch(debug=True)
|
vox-adv-cpk.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6792d6810d7f46e3c5c487a1cfec916b96fad8912c3c6cc81baa1fc300c820d3
|
| 3 |
+
size 750926934
|