Upload lora-scripts/sd-scripts/networks/lora_diffusers.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/networks/lora_diffusers.py
ADDED
|
@@ -0,0 +1,616 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Diffusersで動くLoRA。このファイル単独で完結する。
|
| 2 |
+
# LoRA module for Diffusers. This file works independently.
|
| 3 |
+
|
| 4 |
+
import bisect
|
| 5 |
+
import math
|
| 6 |
+
import random
|
| 7 |
+
from typing import Any, Dict, List, Mapping, Optional, Union
|
| 8 |
+
from diffusers import UNet2DConditionModel
|
| 9 |
+
import numpy as np
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
from transformers import CLIPTextModel
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
from library.device_utils import init_ipex, get_preferred_device
|
| 15 |
+
init_ipex()
|
| 16 |
+
|
| 17 |
+
from library.utils import setup_logging
|
| 18 |
+
setup_logging()
|
| 19 |
+
import logging
|
| 20 |
+
logger = logging.getLogger(__name__)
|
| 21 |
+
|
| 22 |
+
def make_unet_conversion_map() -> Dict[str, str]:
|
| 23 |
+
unet_conversion_map_layer = []
|
| 24 |
+
|
| 25 |
+
for i in range(3): # num_blocks is 3 in sdxl
|
| 26 |
+
# loop over downblocks/upblocks
|
| 27 |
+
for j in range(2):
|
| 28 |
+
# loop over resnets/attentions for downblocks
|
| 29 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
| 30 |
+
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
| 31 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
| 32 |
+
|
| 33 |
+
if i < 3:
|
| 34 |
+
# no attention layers in down_blocks.3
|
| 35 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
| 36 |
+
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
| 37 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
| 38 |
+
|
| 39 |
+
for j in range(3):
|
| 40 |
+
# loop over resnets/attentions for upblocks
|
| 41 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
| 42 |
+
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
| 43 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
| 44 |
+
|
| 45 |
+
# if i > 0: commentout for sdxl
|
| 46 |
+
# no attention layers in up_blocks.0
|
| 47 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
| 48 |
+
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
| 49 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
| 50 |
+
|
| 51 |
+
if i < 3:
|
| 52 |
+
# no downsample in down_blocks.3
|
| 53 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
| 54 |
+
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
| 55 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
| 56 |
+
|
| 57 |
+
# no upsample in up_blocks.3
|
| 58 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
| 59 |
+
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
| 60 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
| 61 |
+
|
| 62 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
| 63 |
+
sd_mid_atn_prefix = "middle_block.1."
|
| 64 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
| 65 |
+
|
| 66 |
+
for j in range(2):
|
| 67 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
| 68 |
+
sd_mid_res_prefix = f"middle_block.{2*j}."
|
| 69 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
| 70 |
+
|
| 71 |
+
unet_conversion_map_resnet = [
|
| 72 |
+
# (stable-diffusion, HF Diffusers)
|
| 73 |
+
("in_layers.0.", "norm1."),
|
| 74 |
+
("in_layers.2.", "conv1."),
|
| 75 |
+
("out_layers.0.", "norm2."),
|
| 76 |
+
("out_layers.3.", "conv2."),
|
| 77 |
+
("emb_layers.1.", "time_emb_proj."),
|
| 78 |
+
("skip_connection.", "conv_shortcut."),
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
unet_conversion_map = []
|
| 82 |
+
for sd, hf in unet_conversion_map_layer:
|
| 83 |
+
if "resnets" in hf:
|
| 84 |
+
for sd_res, hf_res in unet_conversion_map_resnet:
|
| 85 |
+
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
| 86 |
+
else:
|
| 87 |
+
unet_conversion_map.append((sd, hf))
|
| 88 |
+
|
| 89 |
+
for j in range(2):
|
| 90 |
+
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
| 91 |
+
sd_time_embed_prefix = f"time_embed.{j*2}."
|
| 92 |
+
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
| 93 |
+
|
| 94 |
+
for j in range(2):
|
| 95 |
+
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
| 96 |
+
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
| 97 |
+
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
| 98 |
+
|
| 99 |
+
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
| 100 |
+
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
| 101 |
+
unet_conversion_map.append(("out.2.", "conv_out."))
|
| 102 |
+
|
| 103 |
+
sd_hf_conversion_map = {sd.replace(".", "_")[:-1]: hf.replace(".", "_")[:-1] for sd, hf in unet_conversion_map}
|
| 104 |
+
return sd_hf_conversion_map
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
UNET_CONVERSION_MAP = make_unet_conversion_map()
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class LoRAModule(torch.nn.Module):
|
| 111 |
+
"""
|
| 112 |
+
replaces forward method of the original Linear, instead of replacing the original Linear module.
|
| 113 |
+
"""
|
| 114 |
+
|
| 115 |
+
def __init__(
|
| 116 |
+
self,
|
| 117 |
+
lora_name,
|
| 118 |
+
org_module: torch.nn.Module,
|
| 119 |
+
multiplier=1.0,
|
| 120 |
+
lora_dim=4,
|
| 121 |
+
alpha=1,
|
| 122 |
+
):
|
| 123 |
+
"""if alpha == 0 or None, alpha is rank (no scaling)."""
|
| 124 |
+
super().__init__()
|
| 125 |
+
self.lora_name = lora_name
|
| 126 |
+
|
| 127 |
+
if org_module.__class__.__name__ == "Conv2d" or org_module.__class__.__name__ == "LoRACompatibleConv":
|
| 128 |
+
in_dim = org_module.in_channels
|
| 129 |
+
out_dim = org_module.out_channels
|
| 130 |
+
else:
|
| 131 |
+
in_dim = org_module.in_features
|
| 132 |
+
out_dim = org_module.out_features
|
| 133 |
+
|
| 134 |
+
self.lora_dim = lora_dim
|
| 135 |
+
|
| 136 |
+
if org_module.__class__.__name__ == "Conv2d" or org_module.__class__.__name__ == "LoRACompatibleConv":
|
| 137 |
+
kernel_size = org_module.kernel_size
|
| 138 |
+
stride = org_module.stride
|
| 139 |
+
padding = org_module.padding
|
| 140 |
+
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
|
| 141 |
+
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
|
| 142 |
+
else:
|
| 143 |
+
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
|
| 144 |
+
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
|
| 145 |
+
|
| 146 |
+
if type(alpha) == torch.Tensor:
|
| 147 |
+
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
|
| 148 |
+
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
|
| 149 |
+
self.scale = alpha / self.lora_dim
|
| 150 |
+
self.register_buffer("alpha", torch.tensor(alpha)) # 勾配計算に含めない / not included in gradient calculation
|
| 151 |
+
|
| 152 |
+
# same as microsoft's
|
| 153 |
+
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
|
| 154 |
+
torch.nn.init.zeros_(self.lora_up.weight)
|
| 155 |
+
|
| 156 |
+
self.multiplier = multiplier
|
| 157 |
+
self.org_module = [org_module]
|
| 158 |
+
self.enabled = True
|
| 159 |
+
self.network: LoRANetwork = None
|
| 160 |
+
self.org_forward = None
|
| 161 |
+
|
| 162 |
+
# override org_module's forward method
|
| 163 |
+
def apply_to(self, multiplier=None):
|
| 164 |
+
if multiplier is not None:
|
| 165 |
+
self.multiplier = multiplier
|
| 166 |
+
if self.org_forward is None:
|
| 167 |
+
self.org_forward = self.org_module[0].forward
|
| 168 |
+
self.org_module[0].forward = self.forward
|
| 169 |
+
|
| 170 |
+
# restore org_module's forward method
|
| 171 |
+
def unapply_to(self):
|
| 172 |
+
if self.org_forward is not None:
|
| 173 |
+
self.org_module[0].forward = self.org_forward
|
| 174 |
+
|
| 175 |
+
# forward with lora
|
| 176 |
+
# scale is used LoRACompatibleConv, but we ignore it because we have multiplier
|
| 177 |
+
def forward(self, x, scale=1.0):
|
| 178 |
+
if not self.enabled:
|
| 179 |
+
return self.org_forward(x)
|
| 180 |
+
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
|
| 181 |
+
|
| 182 |
+
def set_network(self, network):
|
| 183 |
+
self.network = network
|
| 184 |
+
|
| 185 |
+
# merge lora weight to org weight
|
| 186 |
+
def merge_to(self, multiplier=1.0):
|
| 187 |
+
# get lora weight
|
| 188 |
+
lora_weight = self.get_weight(multiplier)
|
| 189 |
+
|
| 190 |
+
# get org weight
|
| 191 |
+
org_sd = self.org_module[0].state_dict()
|
| 192 |
+
org_weight = org_sd["weight"]
|
| 193 |
+
weight = org_weight + lora_weight.to(org_weight.device, dtype=org_weight.dtype)
|
| 194 |
+
|
| 195 |
+
# set weight to org_module
|
| 196 |
+
org_sd["weight"] = weight
|
| 197 |
+
self.org_module[0].load_state_dict(org_sd)
|
| 198 |
+
|
| 199 |
+
# restore org weight from lora weight
|
| 200 |
+
def restore_from(self, multiplier=1.0):
|
| 201 |
+
# get lora weight
|
| 202 |
+
lora_weight = self.get_weight(multiplier)
|
| 203 |
+
|
| 204 |
+
# get org weight
|
| 205 |
+
org_sd = self.org_module[0].state_dict()
|
| 206 |
+
org_weight = org_sd["weight"]
|
| 207 |
+
weight = org_weight - lora_weight.to(org_weight.device, dtype=org_weight.dtype)
|
| 208 |
+
|
| 209 |
+
# set weight to org_module
|
| 210 |
+
org_sd["weight"] = weight
|
| 211 |
+
self.org_module[0].load_state_dict(org_sd)
|
| 212 |
+
|
| 213 |
+
# return lora weight
|
| 214 |
+
def get_weight(self, multiplier=None):
|
| 215 |
+
if multiplier is None:
|
| 216 |
+
multiplier = self.multiplier
|
| 217 |
+
|
| 218 |
+
# get up/down weight from module
|
| 219 |
+
up_weight = self.lora_up.weight.to(torch.float)
|
| 220 |
+
down_weight = self.lora_down.weight.to(torch.float)
|
| 221 |
+
|
| 222 |
+
# pre-calculated weight
|
| 223 |
+
if len(down_weight.size()) == 2:
|
| 224 |
+
# linear
|
| 225 |
+
weight = self.multiplier * (up_weight @ down_weight) * self.scale
|
| 226 |
+
elif down_weight.size()[2:4] == (1, 1):
|
| 227 |
+
# conv2d 1x1
|
| 228 |
+
weight = (
|
| 229 |
+
self.multiplier
|
| 230 |
+
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
| 231 |
+
* self.scale
|
| 232 |
+
)
|
| 233 |
+
else:
|
| 234 |
+
# conv2d 3x3
|
| 235 |
+
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
|
| 236 |
+
weight = self.multiplier * conved * self.scale
|
| 237 |
+
|
| 238 |
+
return weight
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
# Create network from weights for inference, weights are not loaded here
|
| 242 |
+
def create_network_from_weights(
|
| 243 |
+
text_encoder: Union[CLIPTextModel, List[CLIPTextModel]], unet: UNet2DConditionModel, weights_sd: Dict, multiplier: float = 1.0
|
| 244 |
+
):
|
| 245 |
+
# get dim/alpha mapping
|
| 246 |
+
modules_dim = {}
|
| 247 |
+
modules_alpha = {}
|
| 248 |
+
for key, value in weights_sd.items():
|
| 249 |
+
if "." not in key:
|
| 250 |
+
continue
|
| 251 |
+
|
| 252 |
+
lora_name = key.split(".")[0]
|
| 253 |
+
if "alpha" in key:
|
| 254 |
+
modules_alpha[lora_name] = value
|
| 255 |
+
elif "lora_down" in key:
|
| 256 |
+
dim = value.size()[0]
|
| 257 |
+
modules_dim[lora_name] = dim
|
| 258 |
+
# logger.info(f"{lora_name} {value.size()} {dim}")
|
| 259 |
+
|
| 260 |
+
# support old LoRA without alpha
|
| 261 |
+
for key in modules_dim.keys():
|
| 262 |
+
if key not in modules_alpha:
|
| 263 |
+
modules_alpha[key] = modules_dim[key]
|
| 264 |
+
|
| 265 |
+
return LoRANetwork(text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha)
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def merge_lora_weights(pipe, weights_sd: Dict, multiplier: float = 1.0):
|
| 269 |
+
text_encoders = [pipe.text_encoder, pipe.text_encoder_2] if hasattr(pipe, "text_encoder_2") else [pipe.text_encoder]
|
| 270 |
+
unet = pipe.unet
|
| 271 |
+
|
| 272 |
+
lora_network = create_network_from_weights(text_encoders, unet, weights_sd, multiplier=multiplier)
|
| 273 |
+
lora_network.load_state_dict(weights_sd)
|
| 274 |
+
lora_network.merge_to(multiplier=multiplier)
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
# block weightや学習に対応しない簡易版 / simple version without block weight and training
|
| 278 |
+
class LoRANetwork(torch.nn.Module):
|
| 279 |
+
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
|
| 280 |
+
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
|
| 281 |
+
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
|
| 282 |
+
LORA_PREFIX_UNET = "lora_unet"
|
| 283 |
+
LORA_PREFIX_TEXT_ENCODER = "lora_te"
|
| 284 |
+
|
| 285 |
+
# SDXL: must starts with LORA_PREFIX_TEXT_ENCODER
|
| 286 |
+
LORA_PREFIX_TEXT_ENCODER1 = "lora_te1"
|
| 287 |
+
LORA_PREFIX_TEXT_ENCODER2 = "lora_te2"
|
| 288 |
+
|
| 289 |
+
def __init__(
|
| 290 |
+
self,
|
| 291 |
+
text_encoder: Union[List[CLIPTextModel], CLIPTextModel],
|
| 292 |
+
unet: UNet2DConditionModel,
|
| 293 |
+
multiplier: float = 1.0,
|
| 294 |
+
modules_dim: Optional[Dict[str, int]] = None,
|
| 295 |
+
modules_alpha: Optional[Dict[str, int]] = None,
|
| 296 |
+
varbose: Optional[bool] = False,
|
| 297 |
+
) -> None:
|
| 298 |
+
super().__init__()
|
| 299 |
+
self.multiplier = multiplier
|
| 300 |
+
|
| 301 |
+
logger.info("create LoRA network from weights")
|
| 302 |
+
|
| 303 |
+
# convert SDXL Stability AI's U-Net modules to Diffusers
|
| 304 |
+
converted = self.convert_unet_modules(modules_dim, modules_alpha)
|
| 305 |
+
if converted:
|
| 306 |
+
logger.info(f"converted {converted} Stability AI's U-Net LoRA modules to Diffusers (SDXL)")
|
| 307 |
+
|
| 308 |
+
# create module instances
|
| 309 |
+
def create_modules(
|
| 310 |
+
is_unet: bool,
|
| 311 |
+
text_encoder_idx: Optional[int], # None, 1, 2
|
| 312 |
+
root_module: torch.nn.Module,
|
| 313 |
+
target_replace_modules: List[torch.nn.Module],
|
| 314 |
+
) -> List[LoRAModule]:
|
| 315 |
+
prefix = (
|
| 316 |
+
self.LORA_PREFIX_UNET
|
| 317 |
+
if is_unet
|
| 318 |
+
else (
|
| 319 |
+
self.LORA_PREFIX_TEXT_ENCODER
|
| 320 |
+
if text_encoder_idx is None
|
| 321 |
+
else (self.LORA_PREFIX_TEXT_ENCODER1 if text_encoder_idx == 1 else self.LORA_PREFIX_TEXT_ENCODER2)
|
| 322 |
+
)
|
| 323 |
+
)
|
| 324 |
+
loras = []
|
| 325 |
+
skipped = []
|
| 326 |
+
for name, module in root_module.named_modules():
|
| 327 |
+
if module.__class__.__name__ in target_replace_modules:
|
| 328 |
+
for child_name, child_module in module.named_modules():
|
| 329 |
+
is_linear = (
|
| 330 |
+
child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "LoRACompatibleLinear"
|
| 331 |
+
)
|
| 332 |
+
is_conv2d = (
|
| 333 |
+
child_module.__class__.__name__ == "Conv2d" or child_module.__class__.__name__ == "LoRACompatibleConv"
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
if is_linear or is_conv2d:
|
| 337 |
+
lora_name = prefix + "." + name + "." + child_name
|
| 338 |
+
lora_name = lora_name.replace(".", "_")
|
| 339 |
+
|
| 340 |
+
if lora_name not in modules_dim:
|
| 341 |
+
# logger.info(f"skipped {lora_name} (not found in modules_dim)")
|
| 342 |
+
skipped.append(lora_name)
|
| 343 |
+
continue
|
| 344 |
+
|
| 345 |
+
dim = modules_dim[lora_name]
|
| 346 |
+
alpha = modules_alpha[lora_name]
|
| 347 |
+
lora = LoRAModule(
|
| 348 |
+
lora_name,
|
| 349 |
+
child_module,
|
| 350 |
+
self.multiplier,
|
| 351 |
+
dim,
|
| 352 |
+
alpha,
|
| 353 |
+
)
|
| 354 |
+
loras.append(lora)
|
| 355 |
+
return loras, skipped
|
| 356 |
+
|
| 357 |
+
text_encoders = text_encoder if type(text_encoder) == list else [text_encoder]
|
| 358 |
+
|
| 359 |
+
# create LoRA for text encoder
|
| 360 |
+
# 毎回すべてのモジュールを作るのは無駄なので要検討 / it is wasteful to create all modules every time, need to consider
|
| 361 |
+
self.text_encoder_loras: List[LoRAModule] = []
|
| 362 |
+
skipped_te = []
|
| 363 |
+
for i, text_encoder in enumerate(text_encoders):
|
| 364 |
+
if len(text_encoders) > 1:
|
| 365 |
+
index = i + 1
|
| 366 |
+
else:
|
| 367 |
+
index = None
|
| 368 |
+
|
| 369 |
+
text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
|
| 370 |
+
self.text_encoder_loras.extend(text_encoder_loras)
|
| 371 |
+
skipped_te += skipped
|
| 372 |
+
logger.info(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
|
| 373 |
+
if len(skipped_te) > 0:
|
| 374 |
+
logger.warning(f"skipped {len(skipped_te)} modules because of missing weight for text encoder.")
|
| 375 |
+
|
| 376 |
+
# extend U-Net target modules to include Conv2d 3x3
|
| 377 |
+
target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE + LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
|
| 378 |
+
|
| 379 |
+
self.unet_loras: List[LoRAModule]
|
| 380 |
+
self.unet_loras, skipped_un = create_modules(True, None, unet, target_modules)
|
| 381 |
+
logger.info(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
|
| 382 |
+
if len(skipped_un) > 0:
|
| 383 |
+
logger.warning(f"skipped {len(skipped_un)} modules because of missing weight for U-Net.")
|
| 384 |
+
|
| 385 |
+
# assertion
|
| 386 |
+
names = set()
|
| 387 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
| 388 |
+
names.add(lora.lora_name)
|
| 389 |
+
for lora_name in modules_dim.keys():
|
| 390 |
+
assert lora_name in names, f"{lora_name} is not found in created LoRA modules."
|
| 391 |
+
|
| 392 |
+
# make to work load_state_dict
|
| 393 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
| 394 |
+
self.add_module(lora.lora_name, lora)
|
| 395 |
+
|
| 396 |
+
# SDXL: convert SDXL Stability AI's U-Net modules to Diffusers
|
| 397 |
+
def convert_unet_modules(self, modules_dim, modules_alpha):
|
| 398 |
+
converted_count = 0
|
| 399 |
+
not_converted_count = 0
|
| 400 |
+
|
| 401 |
+
map_keys = list(UNET_CONVERSION_MAP.keys())
|
| 402 |
+
map_keys.sort()
|
| 403 |
+
|
| 404 |
+
for key in list(modules_dim.keys()):
|
| 405 |
+
if key.startswith(LoRANetwork.LORA_PREFIX_UNET + "_"):
|
| 406 |
+
search_key = key.replace(LoRANetwork.LORA_PREFIX_UNET + "_", "")
|
| 407 |
+
position = bisect.bisect_right(map_keys, search_key)
|
| 408 |
+
map_key = map_keys[position - 1]
|
| 409 |
+
if search_key.startswith(map_key):
|
| 410 |
+
new_key = key.replace(map_key, UNET_CONVERSION_MAP[map_key])
|
| 411 |
+
modules_dim[new_key] = modules_dim[key]
|
| 412 |
+
modules_alpha[new_key] = modules_alpha[key]
|
| 413 |
+
del modules_dim[key]
|
| 414 |
+
del modules_alpha[key]
|
| 415 |
+
converted_count += 1
|
| 416 |
+
else:
|
| 417 |
+
not_converted_count += 1
|
| 418 |
+
assert (
|
| 419 |
+
converted_count == 0 or not_converted_count == 0
|
| 420 |
+
), f"some modules are not converted: {converted_count} converted, {not_converted_count} not converted"
|
| 421 |
+
return converted_count
|
| 422 |
+
|
| 423 |
+
def set_multiplier(self, multiplier):
|
| 424 |
+
self.multiplier = multiplier
|
| 425 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
| 426 |
+
lora.multiplier = self.multiplier
|
| 427 |
+
|
| 428 |
+
def apply_to(self, multiplier=1.0, apply_text_encoder=True, apply_unet=True):
|
| 429 |
+
if apply_text_encoder:
|
| 430 |
+
logger.info("enable LoRA for text encoder")
|
| 431 |
+
for lora in self.text_encoder_loras:
|
| 432 |
+
lora.apply_to(multiplier)
|
| 433 |
+
if apply_unet:
|
| 434 |
+
logger.info("enable LoRA for U-Net")
|
| 435 |
+
for lora in self.unet_loras:
|
| 436 |
+
lora.apply_to(multiplier)
|
| 437 |
+
|
| 438 |
+
def unapply_to(self):
|
| 439 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
| 440 |
+
lora.unapply_to()
|
| 441 |
+
|
| 442 |
+
def merge_to(self, multiplier=1.0):
|
| 443 |
+
logger.info("merge LoRA weights to original weights")
|
| 444 |
+
for lora in tqdm(self.text_encoder_loras + self.unet_loras):
|
| 445 |
+
lora.merge_to(multiplier)
|
| 446 |
+
logger.info(f"weights are merged")
|
| 447 |
+
|
| 448 |
+
def restore_from(self, multiplier=1.0):
|
| 449 |
+
logger.info("restore LoRA weights from original weights")
|
| 450 |
+
for lora in tqdm(self.text_encoder_loras + self.unet_loras):
|
| 451 |
+
lora.restore_from(multiplier)
|
| 452 |
+
logger.info(f"weights are restored")
|
| 453 |
+
|
| 454 |
+
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
|
| 455 |
+
# convert SDXL Stability AI's state dict to Diffusers' based state dict
|
| 456 |
+
map_keys = list(UNET_CONVERSION_MAP.keys()) # prefix of U-Net modules
|
| 457 |
+
map_keys.sort()
|
| 458 |
+
for key in list(state_dict.keys()):
|
| 459 |
+
if key.startswith(LoRANetwork.LORA_PREFIX_UNET + "_"):
|
| 460 |
+
search_key = key.replace(LoRANetwork.LORA_PREFIX_UNET + "_", "")
|
| 461 |
+
position = bisect.bisect_right(map_keys, search_key)
|
| 462 |
+
map_key = map_keys[position - 1]
|
| 463 |
+
if search_key.startswith(map_key):
|
| 464 |
+
new_key = key.replace(map_key, UNET_CONVERSION_MAP[map_key])
|
| 465 |
+
state_dict[new_key] = state_dict[key]
|
| 466 |
+
del state_dict[key]
|
| 467 |
+
|
| 468 |
+
# in case of V2, some weights have different shape, so we need to convert them
|
| 469 |
+
# because V2 LoRA is based on U-Net created by use_linear_projection=False
|
| 470 |
+
my_state_dict = self.state_dict()
|
| 471 |
+
for key in state_dict.keys():
|
| 472 |
+
if state_dict[key].size() != my_state_dict[key].size():
|
| 473 |
+
# logger.info(f"convert {key} from {state_dict[key].size()} to {my_state_dict[key].size()}")
|
| 474 |
+
state_dict[key] = state_dict[key].view(my_state_dict[key].size())
|
| 475 |
+
|
| 476 |
+
return super().load_state_dict(state_dict, strict)
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
if __name__ == "__main__":
|
| 480 |
+
# sample code to use LoRANetwork
|
| 481 |
+
import os
|
| 482 |
+
import argparse
|
| 483 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline
|
| 484 |
+
import torch
|
| 485 |
+
|
| 486 |
+
device = get_preferred_device()
|
| 487 |
+
|
| 488 |
+
parser = argparse.ArgumentParser()
|
| 489 |
+
parser.add_argument("--model_id", type=str, default=None, help="model id for huggingface")
|
| 490 |
+
parser.add_argument("--lora_weights", type=str, default=None, help="path to LoRA weights")
|
| 491 |
+
parser.add_argument("--sdxl", action="store_true", help="use SDXL model")
|
| 492 |
+
parser.add_argument("--prompt", type=str, default="A photo of cat", help="prompt text")
|
| 493 |
+
parser.add_argument("--negative_prompt", type=str, default="", help="negative prompt text")
|
| 494 |
+
parser.add_argument("--seed", type=int, default=0, help="random seed")
|
| 495 |
+
args = parser.parse_args()
|
| 496 |
+
|
| 497 |
+
image_prefix = args.model_id.replace("/", "_") + "_"
|
| 498 |
+
|
| 499 |
+
# load Diffusers model
|
| 500 |
+
logger.info(f"load model from {args.model_id}")
|
| 501 |
+
pipe: Union[StableDiffusionPipeline, StableDiffusionXLPipeline]
|
| 502 |
+
if args.sdxl:
|
| 503 |
+
# use_safetensors=True does not work with 0.18.2
|
| 504 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(args.model_id, variant="fp16", torch_dtype=torch.float16)
|
| 505 |
+
else:
|
| 506 |
+
pipe = StableDiffusionPipeline.from_pretrained(args.model_id, variant="fp16", torch_dtype=torch.float16)
|
| 507 |
+
pipe.to(device)
|
| 508 |
+
pipe.set_use_memory_efficient_attention_xformers(True)
|
| 509 |
+
|
| 510 |
+
text_encoders = [pipe.text_encoder, pipe.text_encoder_2] if args.sdxl else [pipe.text_encoder]
|
| 511 |
+
|
| 512 |
+
# load LoRA weights
|
| 513 |
+
logger.info(f"load LoRA weights from {args.lora_weights}")
|
| 514 |
+
if os.path.splitext(args.lora_weights)[1] == ".safetensors":
|
| 515 |
+
from safetensors.torch import load_file
|
| 516 |
+
|
| 517 |
+
lora_sd = load_file(args.lora_weights)
|
| 518 |
+
else:
|
| 519 |
+
lora_sd = torch.load(args.lora_weights)
|
| 520 |
+
|
| 521 |
+
# create by LoRA weights and load weights
|
| 522 |
+
logger.info(f"create LoRA network")
|
| 523 |
+
lora_network: LoRANetwork = create_network_from_weights(text_encoders, pipe.unet, lora_sd, multiplier=1.0)
|
| 524 |
+
|
| 525 |
+
logger.info(f"load LoRA network weights")
|
| 526 |
+
lora_network.load_state_dict(lora_sd)
|
| 527 |
+
|
| 528 |
+
lora_network.to(device, dtype=pipe.unet.dtype) # required to apply_to. merge_to works without this
|
| 529 |
+
|
| 530 |
+
# 必要があれば、元のモデルの重みをバックアップしておく
|
| 531 |
+
# back-up unet/text encoder weights if necessary
|
| 532 |
+
def detach_and_move_to_cpu(state_dict):
|
| 533 |
+
for k, v in state_dict.items():
|
| 534 |
+
state_dict[k] = v.detach().cpu()
|
| 535 |
+
return state_dict
|
| 536 |
+
|
| 537 |
+
org_unet_sd = pipe.unet.state_dict()
|
| 538 |
+
detach_and_move_to_cpu(org_unet_sd)
|
| 539 |
+
|
| 540 |
+
org_text_encoder_sd = pipe.text_encoder.state_dict()
|
| 541 |
+
detach_and_move_to_cpu(org_text_encoder_sd)
|
| 542 |
+
|
| 543 |
+
if args.sdxl:
|
| 544 |
+
org_text_encoder_2_sd = pipe.text_encoder_2.state_dict()
|
| 545 |
+
detach_and_move_to_cpu(org_text_encoder_2_sd)
|
| 546 |
+
|
| 547 |
+
def seed_everything(seed):
|
| 548 |
+
torch.manual_seed(seed)
|
| 549 |
+
torch.cuda.manual_seed_all(seed)
|
| 550 |
+
np.random.seed(seed)
|
| 551 |
+
random.seed(seed)
|
| 552 |
+
|
| 553 |
+
# create image with original weights
|
| 554 |
+
logger.info(f"create image with original weights")
|
| 555 |
+
seed_everything(args.seed)
|
| 556 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
| 557 |
+
image.save(image_prefix + "original.png")
|
| 558 |
+
|
| 559 |
+
# apply LoRA network to the model: slower than merge_to, but can be reverted easily
|
| 560 |
+
logger.info(f"apply LoRA network to the model")
|
| 561 |
+
lora_network.apply_to(multiplier=1.0)
|
| 562 |
+
|
| 563 |
+
logger.info(f"create image with applied LoRA")
|
| 564 |
+
seed_everything(args.seed)
|
| 565 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
| 566 |
+
image.save(image_prefix + "applied_lora.png")
|
| 567 |
+
|
| 568 |
+
# unapply LoRA network to the model
|
| 569 |
+
logger.info(f"unapply LoRA network to the model")
|
| 570 |
+
lora_network.unapply_to()
|
| 571 |
+
|
| 572 |
+
logger.info(f"create image with unapplied LoRA")
|
| 573 |
+
seed_everything(args.seed)
|
| 574 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
| 575 |
+
image.save(image_prefix + "unapplied_lora.png")
|
| 576 |
+
|
| 577 |
+
# merge LoRA network to the model: faster than apply_to, but requires back-up of original weights (or unmerge_to)
|
| 578 |
+
logger.info(f"merge LoRA network to the model")
|
| 579 |
+
lora_network.merge_to(multiplier=1.0)
|
| 580 |
+
|
| 581 |
+
logger.info(f"create image with LoRA")
|
| 582 |
+
seed_everything(args.seed)
|
| 583 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
| 584 |
+
image.save(image_prefix + "merged_lora.png")
|
| 585 |
+
|
| 586 |
+
# restore (unmerge) LoRA weights: numerically unstable
|
| 587 |
+
# マージされた重みを元に戻す。計算誤差のため、元の重みと完全に一致しないことがあるかもしれない
|
| 588 |
+
# 保存したstate_dictから元の重みを復元するのが確実
|
| 589 |
+
logger.info(f"restore (unmerge) LoRA weights")
|
| 590 |
+
lora_network.restore_from(multiplier=1.0)
|
| 591 |
+
|
| 592 |
+
logger.info(f"create image without LoRA")
|
| 593 |
+
seed_everything(args.seed)
|
| 594 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
| 595 |
+
image.save(image_prefix + "unmerged_lora.png")
|
| 596 |
+
|
| 597 |
+
# restore original weights
|
| 598 |
+
logger.info(f"restore original weights")
|
| 599 |
+
pipe.unet.load_state_dict(org_unet_sd)
|
| 600 |
+
pipe.text_encoder.load_state_dict(org_text_encoder_sd)
|
| 601 |
+
if args.sdxl:
|
| 602 |
+
pipe.text_encoder_2.load_state_dict(org_text_encoder_2_sd)
|
| 603 |
+
|
| 604 |
+
logger.info(f"create image with restored original weights")
|
| 605 |
+
seed_everything(args.seed)
|
| 606 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
| 607 |
+
image.save(image_prefix + "restore_original.png")
|
| 608 |
+
|
| 609 |
+
# use convenience function to merge LoRA weights
|
| 610 |
+
logger.info(f"merge LoRA weights with convenience function")
|
| 611 |
+
merge_lora_weights(pipe, lora_sd, multiplier=1.0)
|
| 612 |
+
|
| 613 |
+
logger.info(f"create image with merged LoRA weights")
|
| 614 |
+
seed_everything(args.seed)
|
| 615 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
| 616 |
+
image.save(image_prefix + "convenience_merged_lora.png")
|