Upload README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pretty_name: OmniCellTOSG
|
| 3 |
+
dataset_name: omnicelltosg
|
| 4 |
+
dataset_summary: |
|
| 5 |
+
OmniCellTOSG is a large-scale Text–Omic Signaling Graph (TOSG) dataset for single-cell learning.
|
| 6 |
+
It integrates sharded expression matrices, graph topology (full/internal/PPI edges), and textual
|
| 7 |
+
entity metadata (names, descriptions, sequences) with optional precomputed embeddings. It supports
|
| 8 |
+
graph-aware pretraining and downstream tasks such as cell-type annotation, disease status, and gender classification.
|
| 9 |
+
|
| 10 |
+
# 🏷️ Taxonomy (use standard HF enums where possible)
|
| 11 |
+
annotations_creators: [no-annotation]
|
| 12 |
+
language_creators: [found]
|
| 13 |
+
language: [en]
|
| 14 |
+
multilinguality: [monolingual]
|
| 15 |
+
source_datasets: [original, external]
|
| 16 |
+
size_categories: [">1M"] # change if needed: n<1K | 1K<n<10K | 10K<n<100K | 100K<n<1M | >1M
|
| 17 |
+
|
| 18 |
+
# 📚 Tasks (use “other” if your task isn’t in HF’s standard list)
|
| 19 |
+
task_categories: [other]
|
| 20 |
+
task_ids:
|
| 21 |
+
- multi-label-classification
|
| 22 |
+
- explanation-generation
|
| 23 |
+
|
| 24 |
+
# 🔖 Tags (free-form keywords)
|
| 25 |
+
tags:
|
| 26 |
+
- single-cell
|
| 27 |
+
- transcriptomics
|
| 28 |
+
- foundation-models
|
| 29 |
+
|
| 30 |
+
# 📄 Licensing & attribution
|
| 31 |
+
license: other
|
| 32 |
+
license_url:
|
| 33 |
+
- https://cellxgene.cziscience.com/tos
|
| 34 |
+
- https://doi.org/10.1038/s41591-024-03150-z
|
| 35 |
+
- https://www.ncbi.nlm.nih.gov/geo/info/citations.html#third-party
|
| 36 |
+
|
| 37 |
+
# 🔗 Project links (optional but recommended)
|
| 38 |
+
homepage: https://github.com/FuhaiLiAiLab/OmniCellTOSG
|
| 39 |
+
repository: https://github.com/FuhaiLiAiLab/OmniCellTOSG
|
| 40 |
+
paper: "https://arxiv.org/pdf/2504.02148"
|
| 41 |
+
point_of_contact: "Heming Zhang"
|
| 42 |
+
|
| 43 |
+
# 🧩 Dataset structure hints (optional)
|
| 44 |
+
dataset_type: multimodal-graph
|
| 45 |
+
configs:
|
| 46 |
+
- config_name: default
|
| 47 |
+
data_files: cell_metadata_with_mappings.csv
|
| 48 |
+
|
| 49 |
+
# ✅ Maintenance
|
| 50 |
+
pretty_format: true
|
| 51 |
+
---
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# OmniCellTOSG
|
| 55 |
+
|
| 56 |
+
<!-- markdownlint-disable first-line-h1 -->
|
| 57 |
+
<!-- markdownlint-disable html -->
|
| 58 |
+
<!-- markdownlint-disable no-duplicate-header -->
|
| 59 |
+
|
| 60 |
+
<div align="center">
|
| 61 |
+
<img src="https://github.com/FuhaiLiAiLab/OmniCellTOSG/blob/main/Figures/OmniCell-logo.png?raw=true" width="55%" alt="OmniCellTOSG Logo" />
|
| 62 |
+
</div>
|
| 63 |
+
|
| 64 |
+
<div align="center">
|
| 65 |
+
<a href="https://github.com/FuhaiLiAiLab/OmniCellTOSG">
|
| 66 |
+
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-OmniCellTOSG-181717?logo=github">
|
| 67 |
+
</a>
|
| 68 |
+
<a href="https://huggingface.co/FuhaiLiAiLab">
|
| 69 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-FuhaiLiAiLab-ffcc00?color=ffcc00&logoColor=white">
|
| 70 |
+
</a>
|
| 71 |
+
<a href="https://arxiv.org/pdf/2504.02148" target="_blank">
|
| 72 |
+
<img alt="Paper" src="https://img.shields.io/badge/arXiv-2504.02148-b31b1b?logo=arxiv&logoColor=white">
|
| 73 |
+
</a>
|
| 74 |
+
</div>
|
| 75 |
+
|
| 76 |
+
---
|
| 77 |
+
|
| 78 |
+
## 🧭 Overview
|
| 79 |
+
|
| 80 |
+
**OmniCellTOSG** is a large-scale **Text–Omic Signaling Graph (TOSG)** resource for **single-cell foundation model pretraining** and **omics analysis**. It combines:
|
| 81 |
+
- **Expression matrices** (sharded `.npy` for scalable IO)
|
| 82 |
+
- **Graph topology** (full, internal, and PPI edges)
|
| 83 |
+
- **Textual metadata** (entity names, descriptions, sequences) with **precomputed embeddings**
|
| 84 |
+
|
| 85 |
+
Supported tasks include **graph–language foundation model pretraining**, **cell-type annotation**, **disease status** and **gender** classification, plus **core signaling inference**.
|
| 86 |
+
|
| 87 |
+
<div align="center">
|
| 88 |
+
<img src="https://github.com/FuhaiLiAiLab/OmniCellTOSG/blob/main/Figures/Figure2.png?raw=true" alt="Dataset Overview" />
|
| 89 |
+
</div>
|
| 90 |
+
|
| 91 |
+
---
|
| 92 |
+
|
| 93 |
+
## 📁 Folder Layout
|
| 94 |
+
|
| 95 |
+
```text
|
| 96 |
+
OmniCellTOSG_Dataset/
|
| 97 |
+
├── expression_matrix/
|
| 98 |
+
│ ├── braincellatlas_brain_part_0.npy
|
| 99 |
+
│ ├── cellxgene_blood_part_0.npy
|
| 100 |
+
│ └── ... (additional *.npy shards)
|
| 101 |
+
├── cell_metadata_with_mappings.csv
|
| 102 |
+
├── edge_index.npy
|
| 103 |
+
├── s_bio.csv
|
| 104 |
+
├── s_desc.csv
|
| 105 |
+
├── s_name.csv
|
| 106 |
+
├── x_bio_emb.npy
|
| 107 |
+
├── x_desc_emb.npy
|
| 108 |
+
└── x_name_emb.csv
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
> **Notes**
|
| 112 |
+
> - Files in `expression_matrix/*.npy` are **sharded partitions** of single-cell expression matrices; merge shards (concatenate/stack) to reconstruct the full matrix for a given source/organ.
|
| 113 |
+
> - `cell_metadata_with_mappings.csv` contains **standardized per-cell annotations** (e.g., tissue, disease, sex, cell type, ontology mappings).
|
| 114 |
+
> - `edge_index.npy`, `s_bio.csv`, `s_name.csv`, and `s_desc.csv` provide the **graph topology** (COO `[2, E]`) and **entity metadata** (biological sequences, names, descriptions).
|
| 115 |
+
> - `x_bio_emb.npy`, `x_desc_emb.npy`, and `x_name_emb.csv` are **precomputed entity embeddings** (`[#entities × D]`, encoder-dependent) aligned to the CSVs—use these to **skip on-the-fly embedding**.
|
| 116 |
+
|
| 117 |
+
---
|
| 118 |
+
|
| 119 |
+
## ⚙️ Installation
|
| 120 |
+
|
| 121 |
+
```bash
|
| 122 |
+
pip install git+https://github.com/FuhaiLiAiLab/OmniCellTOSG
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
---
|
| 126 |
+
|
| 127 |
+
## 🚀 Quick Start
|
| 128 |
+
|
| 129 |
+
```python
|
| 130 |
+
from CellTOSG_Loader.data_loader import CellTOSGDataLoader
|
| 131 |
+
|
| 132 |
+
conditions = {"tissue_general": "brain", "disease_name": "Alzheimer's Disease"}
|
| 133 |
+
|
| 134 |
+
dataset = CellTOSGDataLoader(
|
| 135 |
+
root="/path/to/OmniCellTOSG_Dataset",
|
| 136 |
+
conditions=conditions,
|
| 137 |
+
downstream_task="cell_type", # "disease" | "gender" | "cell_type"
|
| 138 |
+
label_column="cell_type",
|
| 139 |
+
sample_ratio=0.10,
|
| 140 |
+
shuffle=True,
|
| 141 |
+
balanced=False,
|
| 142 |
+
train_text=False, # False → use precomputed x_name_emb / x_desc_emb
|
| 143 |
+
train_bio=False, # False → use precomputed x_bio_emb
|
| 144 |
+
random_state=42,
|
| 145 |
+
output_dir="./Output/data_ad_celltype_0.1",
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
x_all = dataset.data # dict: {x_name_emb, x_desc_emb, x_bio_emb, ...}
|
| 149 |
+
y_all = dataset.labels # labels aligned to rows
|
| 150 |
+
all_edge_index = dataset.edge_index # full graph (COO [2, E])
|
| 151 |
+
internal_edge_index = dataset.internal_edge_index # optional transcript–protein edges
|
| 152 |
+
ppi_edge_index = dataset.ppi_edge_index # optional PPI edges
|
| 153 |
+
x_name_emb, x_desc_emb, x_bio_emb = pre_embed_text(args, dataset, pretrain_model, device) # Prepare text and seq embeddings
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
+
### Parameters (`CellTOSGDataLoader`)
|
| 157 |
+
- **root** *(str, required)* — Filesystem path to the dataset root (e.g., `/path/to/OmniCellTOSG_Dataset`).
|
| 158 |
+
- **conditions** *(dict, required)* — Row filters over cell metadata
|
| 159 |
+
(e.g., `{"tissue_general": "brain", "disease_name": "Alzheimer's Disease"}`).
|
| 160 |
+
- **downstream_task** *(str, required)* — `"disease"` | `"gender"` | `"cell_type"`.
|
| 161 |
+
- **label_column** *(str, required)* — Target label column (e.g., `"disease"`, `"gender"`, `"cell_type"`).
|
| 162 |
+
- **sample_ratio** *(float, optional)* — Fraction of rows to sample (0–1). Mutually exclusive with `sample_size`.
|
| 163 |
+
- **sample_size** *(int, optional)* — Absolute number of rows to sample. Mutually exclusive with `sample_ratio`.
|
| 164 |
+
- **balanced** *(bool, default: `False`)* — Enable class-balancing using task-specific priority labels.
|
| 165 |
+
- **shuffle** *(bool, default: `False`)* — Shuffle rows during sampling/composition.
|
| 166 |
+
- **random_state** *(int, default: `42`)* — Seed for reproducibility.
|
| 167 |
+
- **train_text** *(bool, default: `False`)* — If `False`, return precomputed name/desc embeddings; if `True`, return raw text (`s_name`, `s_desc`) for custom embedding.
|
| 168 |
+
- **train_bio** *(bool, default: `False`)* — If `False`, return precomputed sequence embeddings; if `True`, return raw sequences (`s_bio`) for custom embedding.
|
| 169 |
+
- **output_dir** *(str, optional)* — Directory for loader-generated artifacts (splits, logs, cached subsets).
|
| 170 |
+
|
| 171 |
+
> **Returns** (typical):
|
| 172 |
+
> - `x, y`: features and labels for the selected split
|
| 173 |
+
> - `edge_index`, `internal_edge_index`, `ppi_edge_index`: graph topological information
|
| 174 |
+
> - Either raw text/sequence fields (`s_name`, `s_desc`, `s_bio`) **or** their precomputed embeddings (`x_name_emb`, `x_desc_emb`, `x_bio_emb`), returned according to the `train_text`/`train_bio` flags.
|
| 175 |
+
|
| 176 |
+
---
|
| 177 |
+
|
| 178 |
+
## 🧪 Pretraining
|
| 179 |
+
|
| 180 |
+
```bash
|
| 181 |
+
python pretrain.py
|
| 182 |
+
```
|
| 183 |
+
|
| 184 |
+
---
|
| 185 |
+
|
| 186 |
+
## 🏋️ Training Examples (CLI)
|
| 187 |
+
|
| 188 |
+
**Disease status (AD, brain)**
|
| 189 |
+
```bash
|
| 190 |
+
# Alzheimer's Disease (Take AD as an example)
|
| 191 |
+
python train.py \
|
| 192 |
+
--downstream_task disease \
|
| 193 |
+
--label_column disease \
|
| 194 |
+
--tissue_general brain \
|
| 195 |
+
--disease_name "Alzheimer's Disease" \
|
| 196 |
+
--sample_ratio 0.1 \
|
| 197 |
+
--train_base_layer gat \
|
| 198 |
+
--train_lr 0.0005 \
|
| 199 |
+
--train_batch_size 3 \
|
| 200 |
+
--train_test_random_seed 42 \
|
| 201 |
+
--dataset_output_dir ./Output/data_ad_disease_0.1
|
| 202 |
+
```
|
| 203 |
+
|
| 204 |
+
**Gender (AD, brain)**
|
| 205 |
+
```bash
|
| 206 |
+
# Alzheimer's Disease (Take AD as an example)
|
| 207 |
+
python train.py \
|
| 208 |
+
--downstream_task gender \
|
| 209 |
+
--label_column gender \
|
| 210 |
+
--tissue_general brain \
|
| 211 |
+
--disease_name "Alzheimer's Disease" \
|
| 212 |
+
--sample_ratio 0.1 \
|
| 213 |
+
--train_base_layer gat \
|
| 214 |
+
--train_lr 0.0005 \
|
| 215 |
+
--train_batch_size 2 \
|
| 216 |
+
--train_test_random_seed 42 \
|
| 217 |
+
--dataset_output_dir ./Output/data_ad_gender_0.1
|
| 218 |
+
```
|
| 219 |
+
|
| 220 |
+
**Cell type annotation (LUAD, lung)**
|
| 221 |
+
```bash
|
| 222 |
+
# Lung (LUAD) (Take LUAD as an example)
|
| 223 |
+
python train.py \
|
| 224 |
+
--downstream_task cell_type \
|
| 225 |
+
--label_column cell_type \
|
| 226 |
+
--tissue_general "lung" \
|
| 227 |
+
--disease_name "Lung Adenocarcinoma" \
|
| 228 |
+
--sample_ratio 0.2 \
|
| 229 |
+
--train_base_layer gat \
|
| 230 |
+
--train_lr 0.0001 \
|
| 231 |
+
--train_batch_size 3 \
|
| 232 |
+
--train_test_random_seed 42 \
|
| 233 |
+
--dataset_output_dir ./Output/data_luad_celltype_0.2
|
| 234 |
+
```
|
| 235 |
+
|
| 236 |
+
**Signaling inference**
|
| 237 |
+
```bash
|
| 238 |
+
python analysis.py
|
| 239 |
+
```
|
| 240 |
+
|
| 241 |
+
---
|
| 242 |
+
|
| 243 |
+
## ⚖️ Licensing & Attribution
|
| 244 |
+
|
| 245 |
+
This dataset aggregates data from **CellxGENE**, the **Brain Cell Atlas**, and **GEO**. Use of these resources is governed by their respective terms and citation policies:
|
| 246 |
+
|
| 247 |
+
- **CellxGENE Terms of Service** — Follow the platform’s ToS for data access, reuse, and sharing.
|
| 248 |
+
🔗 https://cellxgene.cziscience.com/tos
|
| 249 |
+
|
| 250 |
+
- **Brain Cell Atlas (citation required)**
|
| 251 |
+
*Cite:*
|
| 252 |
+
Xinyue Chen#, Yin Huang#, Liangfeng Huang#, Ziliang Huang#, Zhao-Zhe Hao#, Lahong Xu, Nana Xu, Zhi Li, Yonggao Mou, Mingli Ye, Renke You, Xuegong Zhang, Sheng Liu*, Zhichao Miao*. **A brain cell atlas integrating single-cell transcriptomes across human brain regions.** *Nat Med* (2024). https://doi.org/10.1038/s41591-024-03150-z
|
| 253 |
+
|
| 254 |
+
- **GEO Citation Policy** — Follow NCBI GEO guidelines for citing datasets and third-party analyses.
|
| 255 |
+
🔗 https://www.ncbi.nlm.nih.gov/geo/info/citations.html#third-party
|
| 256 |
+
|
| 257 |
+
> **Note:** You are responsible for ensuring compliance with the licenses/terms and for providing appropriate attribution to each source in any publications or derived works.
|
| 258 |
+
|
| 259 |
+
---
|
| 260 |
+
|
| 261 |
+
## 📚 Citation
|
| 262 |
+
|
| 263 |
+
If you use **OmniCellTOSG**, please cite:
|
| 264 |
+
|
| 265 |
+
```bibtex
|
| 266 |
+
@misc{omnicelltosg2025,
|
| 267 |
+
title = {OmniCellTOSG: A Text–Omic Signaling Graph Dataset for Single-Cell Learning},
|
| 268 |
+
author = {Zhang, Heming and Li, Fuhai and collaborators},
|
| 269 |
+
year = {2025},
|
| 270 |
+
note = {Dataset on Hugging Face},
|
| 271 |
+
url = {https://huggingface.co/FuhaiLiAiLab}
|
| 272 |
+
}
|
| 273 |
+
```
|