--- dataset_info: features: - name: audio dtype: audio - name: label dtype: class_label: names: '0': audiophile '1': music '2': sound_event '3': speech splits: - name: test num_bytes: 1965782403.25 num_examples: 3150 download_size: 1609823419 dataset_size: 1965782403.25 configs: - config_name: default data_files: - split: test path: data/test-* --- # AudioTokenBench This is the evaluation dataset for [HiggsTokenizer](https://github.com/boson-ai/higgs-audio/blob/main/tech_blogs/TOKENIZER_BLOG.md). It contains 3150 24khz audio samples across 4 subsets: - **Speech**: 1,000 clips of 10 seconds audio, randomly sampled from [DAPS](https://ccrma.stanford.edu/~gautham/Site/daps.html). - **Music**: 1,000 clips of 10 seconds audio, randomly sampled from [MUSDB](https://sigsep.github.io/datasets/musdb.html). - **Sound Event**: 1,000 clips of 10 seconds audio, randomly sampled from [AudioSet](https://research.google.com/audioset/index.html). - **Audiophile**: Contains 150 clips of 30 seconds audio, curated from eleven high-fidelity test discs. The clips feature both music and sound events, selected for high-quality audio evaluation. For detailed evaluation metrics, please refer to our [blog](https://github.com/boson-ai/higgs-audio/blob/main/tech_blogs/TOKENIZER_BLOG.md) and [github](https://github.com/boson-ai/higgs-audio/tree/main).