Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Hebrew
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
89e39a2
·
verified ·
1 Parent(s): 0080cf7

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +123 -0
README.md CHANGED
@@ -1,4 +1,24 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: text
@@ -21,4 +41,107 @@ configs:
21
  path: data/train-*
22
  - split: test
23
  path: data/test-*
 
 
 
24
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-annotated
4
+ language:
5
+ - heb
6
+ license: mit
7
+ multilinguality: monolingual
8
+ source_datasets:
9
+ - mteb/HebrewSentimentAnalysis
10
+ - liordon/HebrewSentimentAnalysis-v2
11
+ task_categories:
12
+ - text-classification
13
+ - sentiment-analysis
14
+ - sentiment-scoring
15
+ - sentiment-classification
16
+ - hate-speech-detection
17
+ task_ids:
18
+ - sentiment-analysis
19
+ - sentiment-scoring
20
+ - sentiment-classification
21
+ - hate-speech-detection
22
  dataset_info:
23
  features:
24
  - name: text
 
41
  path: data/train-*
42
  - split: test
43
  path: data/test-*
44
+ tags:
45
+ - mteb
46
+ - text
47
  ---
48
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
49
+
50
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
51
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">HebrewSentimentAnalysis.v3</h1>
52
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
53
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
54
+ </div>
55
+
56
+ HebrewSentiment is a data set consists of 12,804 user comments to posts on the official Facebook page of Israel’s president, Mr. Reuven Rivlin. In October 2015, we used the open software application Netvizz (Rieder, 2013) to scrape all the comments to all of the president’s posts in the period of June – August 2014, the first three months of Rivlin’s presidency.2 While the president’s posts aimed at reconciling tensions and called for tolerance and empathy, the sentiment expressed in the comments to the president’s posts was polarized between citizens who warmly thanked the president, and citizens that fiercely critiqued his policy. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)
57
+
58
+ | | |
59
+ |---------------|---------------------------------------------|
60
+ | Task category | t2c |
61
+ | Domains | Reviews, Written |
62
+ | Reference | https://huggingface.co/datasets/hebrew_sentiment |
63
+
64
+ Source datasets:
65
+ - [mteb/HebrewSentimentAnalysis](https://huggingface.co/datasets/mteb/HebrewSentimentAnalysis)
66
+ - [liordon/HebrewSentimentAnalysis-v2](https://huggingface.co/datasets/liordon/HebrewSentimentAnalysis-v2)
67
+
68
+
69
+ ## How to evaluate on this task
70
+
71
+ You can evaluate an embedding model on this dataset using the following code:
72
+
73
+ ```python
74
+ import mteb
75
+
76
+ task = mteb.get_task("HebrewSentimentAnalysis.v3")
77
+ evaluator = mteb.MTEB([task])
78
+
79
+ model = mteb.get_model(YOUR_MODEL)
80
+ evaluator.run(model)
81
+ ```
82
+
83
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
84
+ To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).
85
+
86
+ ## Citation
87
+
88
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
89
+
90
+ ```bibtex
91
+
92
+ @inproceedings{amram-etal-2018-representations,
93
+ address = {Santa Fe, New Mexico, USA},
94
+ author = {Amram, Adam and Ben David, Anat and Tsarfaty, Reut},
95
+ booktitle = {Proceedings of the 27th International Conference on Computational Linguistics},
96
+ month = aug,
97
+ pages = {2242--2252},
98
+ publisher = {Association for Computational Linguistics},
99
+ title = {Representations and Architectures in Neural Sentiment Analysis for Morphologically Rich Languages: A Case Study from {M}odern {H}ebrew},
100
+ url = {https://www.aclweb.org/anthology/C18-1190},
101
+ year = {2018},
102
+ }
103
+
104
+
105
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
106
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
107
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
108
+ publisher = {arXiv},
109
+ journal={arXiv preprint arXiv:2502.13595},
110
+ year={2025},
111
+ url={https://arxiv.org/abs/2502.13595},
112
+ doi = {10.48550/arXiv.2502.13595},
113
+ }
114
+
115
+ @article{muennighoff2022mteb,
116
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
117
+ title = {MTEB: Massive Text Embedding Benchmark},
118
+ publisher = {arXiv},
119
+ journal={arXiv preprint arXiv:2210.07316},
120
+ year = {2022}
121
+ url = {https://arxiv.org/abs/2210.07316},
122
+ doi = {10.48550/ARXIV.2210.07316},
123
+ }
124
+ ```
125
+
126
+ # Dataset Statistics
127
+ <details>
128
+ <summary> Dataset Statistics</summary>
129
+
130
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
131
+
132
+ ```python
133
+ import mteb
134
+
135
+ task = mteb.get_task("HebrewSentimentAnalysis.v3")
136
+
137
+ desc_stats = task.metadata.descriptive_stats
138
+ ```
139
+
140
+ ```json
141
+ {}
142
+ ```
143
+
144
+ </details>
145
+
146
+ ---
147
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*