Datasets:
File size: 12,309 Bytes
6d42f8c be3f861 6d42f8c 10658a6 6d42f8c 10658a6 8c032ac 178b92c d10c759 7907277 4ee3b3f 0003cc8 6589fda d859344 c67f1b7 c9d87f8 c6ecb38 a6ca9d7 8a0c730 47255fb 6d42f8c 10658a6 8c032ac 178b92c d10c759 7907277 4ee3b3f 0003cc8 6589fda d859344 c67f1b7 c9d87f8 c6ecb38 a6ca9d7 8a0c730 47255fb be3f861 6d42f8c be3f861 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
---
annotations_creators:
- derived
language:
- amh
- eng
- fra
- hau
- ibo
- lin
- lug
- orm
- pcm
- run
- sna
- som
- swa
- tir
- xho
- yor
license: afl-3.0
multilinguality: multilingual
task_categories:
- text-classification
task_ids: []
dataset_info:
- config_name: amh
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 2202555
num_examples: 5
download_size: 1024003
dataset_size: 2202555
- config_name: eng
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 2981519
num_examples: 5
download_size: 1806836
dataset_size: 2981519
- config_name: fra
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 2263080
num_examples: 5
download_size: 1316499
dataset_size: 2263080
- config_name: hau
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 1682346
num_examples: 5
download_size: 936900
dataset_size: 1682346
- config_name: ibo
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 918529
num_examples: 5
download_size: 482369
dataset_size: 918529
- config_name: lin
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 200128
num_examples: 5
download_size: 111534
dataset_size: 200128
- config_name: lug
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 411371
num_examples: 5
download_size: 235548
dataset_size: 411371
- config_name: orm
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 1058854
num_examples: 5
download_size: 594311
dataset_size: 1058854
- config_name: pcm
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 766227
num_examples: 5
download_size: 460762
dataset_size: 766227
- config_name: run
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 934358
num_examples: 5
download_size: 538345
dataset_size: 934358
- config_name: sna
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 770621
num_examples: 5
download_size: 414872
dataset_size: 770621
- config_name: som
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 1069162
num_examples: 5
download_size: 636026
dataset_size: 1069162
- config_name: swa
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 1736273
num_examples: 5
download_size: 999727
dataset_size: 1736273
- config_name: tir
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 1482817
num_examples: 5
download_size: 720689
dataset_size: 1482817
- config_name: xho
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 584125
num_examples: 5
download_size: 365340
dataset_size: 584125
- config_name: yor
features:
- name: sentences
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 1051099
num_examples: 5
download_size: 570345
dataset_size: 1051099
configs:
- config_name: amh
data_files:
- split: test
path: amh/test-*
- config_name: eng
data_files:
- split: test
path: eng/test-*
- config_name: fra
data_files:
- split: test
path: fra/test-*
- config_name: hau
data_files:
- split: test
path: hau/test-*
- config_name: ibo
data_files:
- split: test
path: ibo/test-*
- config_name: lin
data_files:
- split: test
path: lin/test-*
- config_name: lug
data_files:
- split: test
path: lug/test-*
- config_name: orm
data_files:
- split: test
path: orm/test-*
- config_name: pcm
data_files:
- split: test
path: pcm/test-*
- config_name: run
data_files:
- split: test
path: run/test-*
- config_name: sna
data_files:
- split: test
path: sna/test-*
- config_name: som
data_files:
- split: test
path: som/test-*
- config_name: swa
data_files:
- split: test
path: swa/test-*
- config_name: tir
data_files:
- split: test
path: tir/test-*
- config_name: xho
data_files:
- split: test
path: xho/test-*
- config_name: yor
data_files:
- split: test
path: yor/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MasakhaNEWSClusteringP2P</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
Clustering of news article headlines and texts from MasakhaNEWS dataset. Clustering of 10 sets on the news article label.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | News, Written, Non-fiction |
| Reference | https://huggingface.co/datasets/masakhane/masakhanews |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["MasakhaNEWSClusteringP2P"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@article{adelani2023masakhanews,
author = {David Ifeoluwa Adelani and Marek Masiak and Israel Abebe Azime and Jesujoba Oluwadara Alabi and Atnafu Lambebo Tonja and Christine Mwase and Odunayo Ogundepo and Bonaventure F. P. Dossou and Akintunde Oladipo and Doreen Nixdorf and Chris Chinenye Emezue and Sana Sabah al-azzawi and Blessing K. Sibanda and Davis David and Lolwethu Ndolela and Jonathan Mukiibi and Tunde Oluwaseyi Ajayi and Tatiana Moteu Ngoli and Brian Odhiambo and Abraham Toluwase Owodunni and Nnaemeka C. Obiefuna and Shamsuddeen Hassan Muhammad and Saheed Salahudeen Abdullahi and Mesay Gemeda Yigezu and Tajuddeen Gwadabe and Idris Abdulmumin and Mahlet Taye Bame and Oluwabusayo Olufunke Awoyomi and Iyanuoluwa Shode and Tolulope Anu Adelani and Habiba Abdulganiy Kailani and Abdul-Hakeem Omotayo and Adetola Adeeko and Afolabi Abeeb and Anuoluwapo Aremu and Olanrewaju Samuel and Clemencia Siro and Wangari Kimotho and Onyekachi Raphael Ogbu and Chinedu E. Mbonu and Chiamaka I. Chukwuneke and Samuel Fanijo and Jessica Ojo and Oyinkansola F. Awosan and Tadesse Kebede Guge and Sakayo Toadoum Sari and Pamela Nyatsine and Freedmore Sidume and Oreen Yousuf and Mardiyyah Oduwole and Ussen Kimanuka and Kanda Patrick Tshinu and Thina Diko and Siyanda Nxakama and Abdulmejid Tuni Johar and Sinodos Gebre and Muhidin Mohamed and Shafie Abdi Mohamed and Fuad Mire Hassan and Moges Ahmed Mehamed and Evrard Ngabire and and Pontus Stenetorp},
journal = {ArXiv},
title = {MasakhaNEWS: News Topic Classification for African languages},
volume = {},
year = {2023},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("MasakhaNEWSClusteringP2P")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 80,
"number_of_characters": 6242,
"min_text_length": 35,
"average_text_length": 78.025,
"max_text_length": 190,
"unique_texts": 6236,
"min_labels_per_text": 286,
"average_labels_per_text": 78.025,
"max_labels_per_text": 1589,
"unique_labels": 7,
"labels": {
"0": {
"count": 785
},
"2": {
"count": 1258
},
"3": {
"count": 1589
},
"5": {
"count": 1265
},
"1": {
"count": 762
},
"6": {
"count": 297
},
"4": {
"count": 286
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |