Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 12,309 Bytes
6d42f8c
be3f861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d42f8c
10658a6
6d42f8c
 
 
 
 
 
 
 
 
 
 
10658a6
 
 
 
 
 
 
 
 
 
 
 
8c032ac
 
 
 
 
 
 
 
 
 
 
 
178b92c
 
 
 
 
 
 
 
 
 
 
 
d10c759
 
 
 
 
 
 
 
 
 
 
 
7907277
 
 
 
 
 
 
 
 
 
 
 
4ee3b3f
 
 
 
 
 
 
 
 
 
 
 
0003cc8
 
 
 
 
 
 
 
 
 
 
 
6589fda
 
 
 
 
 
 
 
 
 
 
 
d859344
 
 
 
 
 
 
 
 
 
 
 
c67f1b7
 
 
 
 
 
 
 
 
 
 
 
c9d87f8
 
 
 
 
 
 
 
 
 
 
 
c6ecb38
 
 
 
 
 
 
 
 
 
 
 
a6ca9d7
 
 
 
 
 
 
 
 
 
 
 
8a0c730
 
 
 
 
 
 
 
 
 
 
 
47255fb
 
 
 
 
 
 
 
 
 
 
 
6d42f8c
 
 
 
 
10658a6
 
 
 
8c032ac
 
 
 
178b92c
 
 
 
d10c759
 
 
 
7907277
 
 
 
4ee3b3f
 
 
 
0003cc8
 
 
 
6589fda
 
 
 
d859344
 
 
 
c67f1b7
 
 
 
c9d87f8
 
 
 
c6ecb38
 
 
 
a6ca9d7
 
 
 
8a0c730
 
 
 
47255fb
 
 
 
be3f861
 
 
6d42f8c
be3f861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
---
annotations_creators:
- derived
language:
- amh
- eng
- fra
- hau
- ibo
- lin
- lug
- orm
- pcm
- run
- sna
- som
- swa
- tir
- xho
- yor
license: afl-3.0
multilinguality: multilingual
task_categories:
- text-classification
task_ids: []
dataset_info:
- config_name: amh
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 2202555
    num_examples: 5
  download_size: 1024003
  dataset_size: 2202555
- config_name: eng
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 2981519
    num_examples: 5
  download_size: 1806836
  dataset_size: 2981519
- config_name: fra
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 2263080
    num_examples: 5
  download_size: 1316499
  dataset_size: 2263080
- config_name: hau
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 1682346
    num_examples: 5
  download_size: 936900
  dataset_size: 1682346
- config_name: ibo
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 918529
    num_examples: 5
  download_size: 482369
  dataset_size: 918529
- config_name: lin
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 200128
    num_examples: 5
  download_size: 111534
  dataset_size: 200128
- config_name: lug
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 411371
    num_examples: 5
  download_size: 235548
  dataset_size: 411371
- config_name: orm
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 1058854
    num_examples: 5
  download_size: 594311
  dataset_size: 1058854
- config_name: pcm
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 766227
    num_examples: 5
  download_size: 460762
  dataset_size: 766227
- config_name: run
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 934358
    num_examples: 5
  download_size: 538345
  dataset_size: 934358
- config_name: sna
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 770621
    num_examples: 5
  download_size: 414872
  dataset_size: 770621
- config_name: som
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 1069162
    num_examples: 5
  download_size: 636026
  dataset_size: 1069162
- config_name: swa
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 1736273
    num_examples: 5
  download_size: 999727
  dataset_size: 1736273
- config_name: tir
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 1482817
    num_examples: 5
  download_size: 720689
  dataset_size: 1482817
- config_name: xho
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 584125
    num_examples: 5
  download_size: 365340
  dataset_size: 584125
- config_name: yor
  features:
  - name: sentences
    sequence: string
  - name: labels
    sequence: int64
  splits:
  - name: test
    num_bytes: 1051099
    num_examples: 5
  download_size: 570345
  dataset_size: 1051099
configs:
- config_name: amh
  data_files:
  - split: test
    path: amh/test-*
- config_name: eng
  data_files:
  - split: test
    path: eng/test-*
- config_name: fra
  data_files:
  - split: test
    path: fra/test-*
- config_name: hau
  data_files:
  - split: test
    path: hau/test-*
- config_name: ibo
  data_files:
  - split: test
    path: ibo/test-*
- config_name: lin
  data_files:
  - split: test
    path: lin/test-*
- config_name: lug
  data_files:
  - split: test
    path: lug/test-*
- config_name: orm
  data_files:
  - split: test
    path: orm/test-*
- config_name: pcm
  data_files:
  - split: test
    path: pcm/test-*
- config_name: run
  data_files:
  - split: test
    path: run/test-*
- config_name: sna
  data_files:
  - split: test
    path: sna/test-*
- config_name: som
  data_files:
  - split: test
    path: som/test-*
- config_name: swa
  data_files:
  - split: test
    path: swa/test-*
- config_name: tir
  data_files:
  - split: test
    path: tir/test-*
- config_name: xho
  data_files:
  - split: test
    path: xho/test-*
- config_name: yor
  data_files:
  - split: test
    path: yor/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->

<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
  <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MasakhaNEWSClusteringP2P</h1>
  <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
  <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>

Clustering of news article headlines and texts from MasakhaNEWS dataset. Clustering of 10 sets on the news article label.

|               |                                             |
|---------------|---------------------------------------------|
| Task category | t2c                              |
| Domains       | News, Written, Non-fiction                               |
| Reference     | https://huggingface.co/datasets/masakhane/masakhanews |


## How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

```python
import mteb

task = mteb.get_tasks(["MasakhaNEWSClusteringP2P"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```

<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). 

## Citation

If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).

```bibtex

@article{adelani2023masakhanews,
  author = {David Ifeoluwa Adelani and  Marek Masiak and  Israel Abebe Azime and  Jesujoba Oluwadara Alabi and  Atnafu Lambebo Tonja and  Christine Mwase and  Odunayo Ogundepo and  Bonaventure F. P. Dossou and  Akintunde Oladipo and  Doreen Nixdorf and  Chris Chinenye Emezue and  Sana Sabah al-azzawi and  Blessing K. Sibanda and  Davis David and  Lolwethu Ndolela and  Jonathan Mukiibi and  Tunde Oluwaseyi Ajayi and  Tatiana Moteu Ngoli and  Brian Odhiambo and  Abraham Toluwase Owodunni and  Nnaemeka C. Obiefuna and  Shamsuddeen Hassan Muhammad and  Saheed Salahudeen Abdullahi and  Mesay Gemeda Yigezu and  Tajuddeen Gwadabe and  Idris Abdulmumin and  Mahlet Taye Bame and  Oluwabusayo Olufunke Awoyomi and  Iyanuoluwa Shode and  Tolulope Anu Adelani and  Habiba Abdulganiy Kailani and  Abdul-Hakeem Omotayo and  Adetola Adeeko and  Afolabi Abeeb and  Anuoluwapo Aremu and  Olanrewaju Samuel and  Clemencia Siro and  Wangari Kimotho and  Onyekachi Raphael Ogbu and  Chinedu E. Mbonu and  Chiamaka I. Chukwuneke and  Samuel Fanijo and  Jessica Ojo and  Oyinkansola F. Awosan and  Tadesse Kebede Guge and  Sakayo Toadoum Sari and  Pamela Nyatsine and  Freedmore Sidume and  Oreen Yousuf and  Mardiyyah Oduwole and  Ussen Kimanuka and  Kanda Patrick Tshinu and  Thina Diko and  Siyanda Nxakama and   Abdulmejid Tuni Johar and  Sinodos Gebre and  Muhidin Mohamed and  Shafie Abdi Mohamed and  Fuad Mire Hassan and  Moges Ahmed Mehamed and  Evrard Ngabire and  and Pontus Stenetorp},
  journal = {ArXiv},
  title = {MasakhaNEWS: News Topic Classification for African languages},
  volume = {},
  year = {2023},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}
```

# Dataset Statistics
<details>
  <summary> Dataset Statistics</summary>

The following code contains the descriptive statistics from the task. These can also be obtained using:

```python
import mteb

task = mteb.get_task("MasakhaNEWSClusteringP2P")

desc_stats = task.metadata.descriptive_stats
```

```json
{
    "test": {
        "num_samples": 80,
        "number_of_characters": 6242,
        "min_text_length": 35,
        "average_text_length": 78.025,
        "max_text_length": 190,
        "unique_texts": 6236,
        "min_labels_per_text": 286,
        "average_labels_per_text": 78.025,
        "max_labels_per_text": 1589,
        "unique_labels": 7,
        "labels": {
            "0": {
                "count": 785
            },
            "2": {
                "count": 1258
            },
            "3": {
                "count": 1589
            },
            "5": {
                "count": 1265
            },
            "1": {
                "count": 762
            },
            "6": {
                "count": 297
            },
            "4": {
                "count": 286
            }
        }
    }
}
```

</details>

---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*