Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 11,945 Bytes
1c90cf6
f5146bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c90cf6
23fe98f
1c90cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fe98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c2d3ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe10e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f901b52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d92d40c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c71a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74d14e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e71974f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed73664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dac291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6188cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c90cf6
 
 
 
 
 
 
23fe98f
 
 
 
 
 
 
 
8c2d3ba
 
 
 
 
 
fe10e76
 
 
 
 
 
 
 
f901b52
 
 
 
 
 
 
 
d92d40c
 
 
 
 
 
 
 
b2c71a9
 
 
 
 
 
 
 
b74d14e
 
 
 
 
 
e71974f
 
 
 
 
 
ed73664
 
 
 
 
 
 
 
1dac291
 
 
 
 
 
 
 
6188cf3
 
 
 
 
 
 
 
f5146bf
 
 
1c90cf6
f5146bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
---
annotations_creators:
- human-annotated
language:
- afr
- amh
- arb
- arq
- ary
- eng
- hau
- hin
- ind
- kin
- mar
- tel
license: unknown
multilinguality: multilingual
source_datasets:
- SemRel/SemRel2024
task_categories:
- sentence-similarity
task_ids:
- semantic-similarity-scoring
dataset_info:
- config_name: afr
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: test
    num_bytes: 65243
    num_examples: 375
  - name: dev
    num_bytes: 66249
    num_examples: 375
  download_size: 94636
  dataset_size: 131492
- config_name: amh
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 209475
    num_examples: 992
  - name: test
    num_bytes: 36637
    num_examples: 171
  - name: dev
    num_bytes: 19498
    num_examples: 95
  download_size: 151975
  dataset_size: 265610
- config_name: arb
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: test
    num_bytes: 110473
    num_examples: 595
  - name: dev
    num_bytes: 5846
    num_examples: 32
  download_size: 70965
  dataset_size: 116319
- config_name: arq
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 170025
    num_examples: 1261
  - name: test
    num_bytes: 79323
    num_examples: 583
  - name: dev
    num_bytes: 12181
    num_examples: 97
  download_size: 147464
  dataset_size: 261529
- config_name: ary
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 382561
    num_examples: 924
  - name: test
    num_bytes: 175568
    num_examples: 426
  - name: dev
    num_bytes: 27975
    num_examples: 71
  download_size: 271850
  dataset_size: 586104
- config_name: eng
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 844975
    num_examples: 5500
  - name: test
    num_bytes: 374647
    num_examples: 2600
  - name: dev
    num_bytes: 36697
    num_examples: 250
  download_size: 863705
  dataset_size: 1256319
- config_name: hau
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 403474
    num_examples: 1736
  - name: test
    num_bytes: 142238
    num_examples: 603
  - name: dev
    num_bytes: 49236
    num_examples: 212
  download_size: 325733
  dataset_size: 594948
- config_name: hin
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: test
    num_bytes: 377385
    num_examples: 968
  - name: dev
    num_bytes: 113047
    num_examples: 288
  download_size: 215700
  dataset_size: 490432
- config_name: ind
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: test
    num_bytes: 68185
    num_examples: 360
  - name: dev
    num_bytes: 26579
    num_examples: 144
  download_size: 67141
  dataset_size: 94764
- config_name: kin
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 234520
    num_examples: 778
  - name: test
    num_bytes: 67211
    num_examples: 222
  - name: dev
    num_bytes: 30758
    num_examples: 102
  download_size: 217018
  dataset_size: 332489
- config_name: mar
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 555224
    num_examples: 1155
  - name: test
    num_bytes: 139343
    num_examples: 298
  - name: dev
    num_bytes: 146496
    num_examples: 293
  download_size: 376001
  dataset_size: 841063
- config_name: tel
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 561688
    num_examples: 1146
  - name: test
    num_bytes: 145249
    num_examples: 297
  - name: dev
    num_bytes: 64775
    num_examples: 130
  download_size: 342756
  dataset_size: 771712
configs:
- config_name: afr
  data_files:
  - split: test
    path: afr/test-*
  - split: dev
    path: afr/dev-*
- config_name: amh
  data_files:
  - split: train
    path: amh/train-*
  - split: test
    path: amh/test-*
  - split: dev
    path: amh/dev-*
- config_name: arb
  data_files:
  - split: test
    path: arb/test-*
  - split: dev
    path: arb/dev-*
- config_name: arq
  data_files:
  - split: train
    path: arq/train-*
  - split: test
    path: arq/test-*
  - split: dev
    path: arq/dev-*
- config_name: ary
  data_files:
  - split: train
    path: ary/train-*
  - split: test
    path: ary/test-*
  - split: dev
    path: ary/dev-*
- config_name: eng
  data_files:
  - split: train
    path: eng/train-*
  - split: test
    path: eng/test-*
  - split: dev
    path: eng/dev-*
- config_name: hau
  data_files:
  - split: train
    path: hau/train-*
  - split: test
    path: hau/test-*
  - split: dev
    path: hau/dev-*
- config_name: hin
  data_files:
  - split: test
    path: hin/test-*
  - split: dev
    path: hin/dev-*
- config_name: ind
  data_files:
  - split: test
    path: ind/test-*
  - split: dev
    path: ind/dev-*
- config_name: kin
  data_files:
  - split: train
    path: kin/train-*
  - split: test
    path: kin/test-*
  - split: dev
    path: kin/dev-*
- config_name: mar
  data_files:
  - split: train
    path: mar/train-*
  - split: test
    path: mar/test-*
  - split: dev
    path: mar/dev-*
- config_name: tel
  data_files:
  - split: train
    path: tel/train-*
  - split: test
    path: tel/test-*
  - split: dev
    path: tel/dev-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->

<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
  <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">SemRel24STS</h1>
  <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
  <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>

SemRel2024 is a collection of Semantic Textual Relatedness (STR) datasets for 14 languages, including African and Asian languages. The datasets are composed of sentence pairs, each assigned a relatedness score between 0 (completely) unrelated and 1 (maximally related) with a large range of expected relatedness values.

|               |                                             |
|---------------|---------------------------------------------|
| Task category | t2t                              |
| Domains       | Spoken, Written                               |
| Reference     | https://huggingface.co/datasets/SemRel/SemRel2024 |




## How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

```python
import mteb

task = mteb.get_task("SemRel24STS")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```

<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).

## Citation

If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).

```bibtex

@misc{ousidhoum2024semrel2024,
  archiveprefix = {arXiv},
  author = {Nedjma Ousidhoum and Shamsuddeen Hassan Muhammad and Mohamed Abdalla and Idris Abdulmumin and Ibrahim Said Ahmad and
Sanchit Ahuja and Alham Fikri Aji and Vladimir Araujo and Abinew Ali Ayele and Pavan Baswani and Meriem Beloucif and
Chris Biemann and Sofia Bourhim and Christine De Kock and Genet Shanko Dekebo and
Oumaima Hourrane and Gopichand Kanumolu and Lokesh Madasu and Samuel Rutunda and Manish Shrivastava and
Thamar Solorio and Nirmal Surange and Hailegnaw Getaneh Tilaye and Krishnapriya Vishnubhotla and Genta Winata and
Seid Muhie Yimam and Saif M. Mohammad},
  eprint = {2402.08638},
  primaryclass = {cs.CL},
  title = {SemRel2024: A Collection of Semantic Textual Relatedness Datasets for 14 Languages},
  year = {2024},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}
```

# Dataset Statistics
<details>
  <summary> Dataset Statistics</summary>

The following code contains the descriptive statistics from the task. These can also be obtained using:

```python
import mteb

task = mteb.get_task("SemRel24STS")

desc_stats = task.metadata.descriptive_stats
```

```json
{}
```

</details>

---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*