Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Remove Medical Subdomain of Clinical Notes
Browse files
data/medical_subdomain_of_clinical_notes/task.json
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
{"name": "medical_subdomain_of_clinical_notes", "description": "", "data_columns": ["Note", "ID"], "label_columns": {"Label": ["cardiology", "gastroenterology", "nephrology", "neurology", "psychiatry", "pulmonary disease"]}}
|
|
|
|
|
|
data/medical_subdomain_of_clinical_notes/test_unlabeled.csv
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/medical_subdomain_of_clinical_notes/train.csv
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
raft.py
CHANGED
|
@@ -21,7 +21,6 @@ from pathlib import Path
|
|
| 21 |
import datasets
|
| 22 |
|
| 23 |
# TODO: Add BibTeX citation
|
| 24 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 25 |
_CITATION = """\
|
| 26 |
@InProceedings{huggingface:dataset,
|
| 27 |
title = {A great new dataset},
|
|
@@ -31,44 +30,32 @@ year={2020}
|
|
| 31 |
}
|
| 32 |
"""
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
"""
|
| 37 |
|
| 38 |
-
|
| 39 |
-
_HOMEPAGE = ""
|
| 40 |
|
| 41 |
# TODO: Add the licence for the dataset here if you can find it
|
| 42 |
_LICENSE = ""
|
| 43 |
|
| 44 |
-
|
| 45 |
-
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
| 46 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 47 |
-
# This gets all folders within the directory named `data`
|
| 48 |
-
DATA_DIR_URL = "data/" # "https://huggingface.co/datasets/ought/raft/resolve/main/data/"
|
| 49 |
-
# print([p for p in DATA_DIR_PATH.iterdir() if p.is_dir()])
|
| 50 |
TASKS = {
|
| 51 |
"ade_corpus_v2": {
|
| 52 |
"name": "ade_corpus_v2",
|
| 53 |
"description": "",
|
| 54 |
-
"data_columns": [
|
| 55 |
-
|
| 56 |
-
"ID"
|
| 57 |
-
],
|
| 58 |
-
"label_columns": {
|
| 59 |
-
"Label": [
|
| 60 |
-
"ADE-related",
|
| 61 |
-
"not ADE-related"
|
| 62 |
-
]
|
| 63 |
-
}
|
| 64 |
},
|
| 65 |
"banking_77": {
|
| 66 |
"name": "banking_77",
|
| 67 |
"description": "",
|
| 68 |
-
"data_columns": [
|
| 69 |
-
"Query",
|
| 70 |
-
"ID"
|
| 71 |
-
],
|
| 72 |
"label_columns": {
|
| 73 |
"Label": [
|
| 74 |
"Refund_not_showing_up",
|
|
@@ -147,23 +134,15 @@ TASKS = {
|
|
| 147 |
"visa_or_mastercard",
|
| 148 |
"why_verify_identity",
|
| 149 |
"wrong_amount_of_cash_received",
|
| 150 |
-
"wrong_exchange_rate_for_cash_withdrawal"
|
| 151 |
]
|
| 152 |
-
}
|
| 153 |
},
|
| 154 |
"terms_of_service": {
|
| 155 |
"name": "terms_of_service",
|
| 156 |
"description": "",
|
| 157 |
-
"data_columns": [
|
| 158 |
-
|
| 159 |
-
"ID"
|
| 160 |
-
],
|
| 161 |
-
"label_columns": {
|
| 162 |
-
"Label": [
|
| 163 |
-
"not potentially unfair",
|
| 164 |
-
"potentially unfair"
|
| 165 |
-
]
|
| 166 |
-
}
|
| 167 |
},
|
| 168 |
"tai_safety_research": {
|
| 169 |
"name": "tai_safety_research",
|
|
@@ -176,138 +155,51 @@ TASKS = {
|
|
| 176 |
"Item Type",
|
| 177 |
"Author",
|
| 178 |
"Publication Title",
|
| 179 |
-
"ID"
|
| 180 |
],
|
| 181 |
-
"label_columns": {
|
| 182 |
-
"Label": [
|
| 183 |
-
"TAI safety research",
|
| 184 |
-
"not TAI safety research"
|
| 185 |
-
]
|
| 186 |
-
}
|
| 187 |
},
|
| 188 |
"neurips_impact_statement_risks": {
|
| 189 |
"name": "neurips_impact_statement_risks",
|
| 190 |
"description": "",
|
| 191 |
-
"data_columns": [
|
| 192 |
-
|
| 193 |
-
"Paper link",
|
| 194 |
-
"Impact statement",
|
| 195 |
-
"ID"
|
| 196 |
-
],
|
| 197 |
-
"label_columns": {
|
| 198 |
-
"Label": [
|
| 199 |
-
"doesn't mention a harmful application",
|
| 200 |
-
"mentions a harmful application"
|
| 201 |
-
]
|
| 202 |
-
}
|
| 203 |
-
},
|
| 204 |
-
"medical_subdomain_of_clinical_notes": {
|
| 205 |
-
"name": "medical_subdomain_of_clinical_notes",
|
| 206 |
-
"description": "",
|
| 207 |
-
"data_columns": [
|
| 208 |
-
"Note",
|
| 209 |
-
"ID"
|
| 210 |
-
],
|
| 211 |
-
"label_columns": {
|
| 212 |
-
"Label": [
|
| 213 |
-
"cardiology",
|
| 214 |
-
"gastroenterology",
|
| 215 |
-
"nephrology",
|
| 216 |
-
"neurology",
|
| 217 |
-
"psychiatry",
|
| 218 |
-
"pulmonary disease"
|
| 219 |
-
]
|
| 220 |
-
}
|
| 221 |
},
|
| 222 |
"overruling": {
|
| 223 |
"name": "overruling",
|
| 224 |
"description": "",
|
| 225 |
-
"data_columns": [
|
| 226 |
-
|
| 227 |
-
"ID"
|
| 228 |
-
],
|
| 229 |
-
"label_columns": {
|
| 230 |
-
"Label": [
|
| 231 |
-
"not overruling",
|
| 232 |
-
"overruling"
|
| 233 |
-
]
|
| 234 |
-
}
|
| 235 |
},
|
| 236 |
"systematic_review_inclusion": {
|
| 237 |
"name": "systematic_review_inclusion",
|
| 238 |
"description": "",
|
| 239 |
-
"data_columns": [
|
| 240 |
-
|
| 241 |
-
"Abstract",
|
| 242 |
-
"Authors",
|
| 243 |
-
"Journal",
|
| 244 |
-
"ID"
|
| 245 |
-
],
|
| 246 |
-
"label_columns": {
|
| 247 |
-
"Label": [
|
| 248 |
-
"included",
|
| 249 |
-
"not included"
|
| 250 |
-
]
|
| 251 |
-
}
|
| 252 |
},
|
| 253 |
"one_stop_english": {
|
| 254 |
"name": "one_stop_english",
|
| 255 |
"description": "",
|
| 256 |
-
"data_columns": [
|
| 257 |
-
|
| 258 |
-
"ID"
|
| 259 |
-
],
|
| 260 |
-
"label_columns": {
|
| 261 |
-
"Label": [
|
| 262 |
-
"advanced",
|
| 263 |
-
"elementary",
|
| 264 |
-
"intermediate"
|
| 265 |
-
]
|
| 266 |
-
}
|
| 267 |
},
|
| 268 |
"tweet_eval_hate": {
|
| 269 |
"name": "tweet_eval_hate",
|
| 270 |
"description": "",
|
| 271 |
-
"data_columns": [
|
| 272 |
-
|
| 273 |
-
"ID"
|
| 274 |
-
],
|
| 275 |
-
"label_columns": {
|
| 276 |
-
"Label": [
|
| 277 |
-
"hate speech",
|
| 278 |
-
"not hate speech"
|
| 279 |
-
]
|
| 280 |
-
}
|
| 281 |
},
|
| 282 |
"twitter_complaints": {
|
| 283 |
"name": "twitter_complaints",
|
| 284 |
"description": "",
|
| 285 |
-
"data_columns": [
|
| 286 |
-
|
| 287 |
-
"ID"
|
| 288 |
-
],
|
| 289 |
-
"label_columns": {
|
| 290 |
-
"Label": [
|
| 291 |
-
"complaint",
|
| 292 |
-
"no complaint"
|
| 293 |
-
]
|
| 294 |
-
}
|
| 295 |
},
|
| 296 |
"semiconductor_org_types": {
|
| 297 |
"name": "semiconductor_org_types",
|
| 298 |
"description": "",
|
| 299 |
-
"data_columns": [
|
| 300 |
-
|
| 301 |
-
"Organization name",
|
| 302 |
-
"ID"
|
| 303 |
-
],
|
| 304 |
-
"label_columns": {
|
| 305 |
-
"Label": [
|
| 306 |
-
"company",
|
| 307 |
-
"research institute",
|
| 308 |
-
"university"
|
| 309 |
-
]
|
| 310 |
-
}
|
| 311 |
},
|
| 312 |
}
|
| 313 |
|
|
|
|
| 21 |
import datasets
|
| 22 |
|
| 23 |
# TODO: Add BibTeX citation
|
|
|
|
| 24 |
_CITATION = """\
|
| 25 |
@InProceedings{huggingface:dataset,
|
| 26 |
title = {A great new dataset},
|
|
|
|
| 30 |
}
|
| 31 |
"""
|
| 32 |
|
| 33 |
+
_DESCRIPTION = """Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants?
|
| 34 |
+
|
| 35 |
+
[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:
|
| 36 |
+
|
| 37 |
+
- across multiple domains (lit review, tweets, customer interaction, etc.)
|
| 38 |
+
- on economically valuable classification tasks (someone inherently cares about the task)
|
| 39 |
+
- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)
|
| 40 |
"""
|
| 41 |
|
| 42 |
+
_HOMEPAGE = "https://raft.elicit.org"
|
|
|
|
| 43 |
|
| 44 |
# TODO: Add the licence for the dataset here if you can find it
|
| 45 |
_LICENSE = ""
|
| 46 |
|
| 47 |
+
DATA_DIR_URL = "data/"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
TASKS = {
|
| 49 |
"ade_corpus_v2": {
|
| 50 |
"name": "ade_corpus_v2",
|
| 51 |
"description": "",
|
| 52 |
+
"data_columns": ["Sentence", "ID"],
|
| 53 |
+
"label_columns": {"Label": ["ADE-related", "not ADE-related"]},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
},
|
| 55 |
"banking_77": {
|
| 56 |
"name": "banking_77",
|
| 57 |
"description": "",
|
| 58 |
+
"data_columns": ["Query", "ID"],
|
|
|
|
|
|
|
|
|
|
| 59 |
"label_columns": {
|
| 60 |
"Label": [
|
| 61 |
"Refund_not_showing_up",
|
|
|
|
| 134 |
"visa_or_mastercard",
|
| 135 |
"why_verify_identity",
|
| 136 |
"wrong_amount_of_cash_received",
|
| 137 |
+
"wrong_exchange_rate_for_cash_withdrawal",
|
| 138 |
]
|
| 139 |
+
},
|
| 140 |
},
|
| 141 |
"terms_of_service": {
|
| 142 |
"name": "terms_of_service",
|
| 143 |
"description": "",
|
| 144 |
+
"data_columns": ["Sentence", "ID"],
|
| 145 |
+
"label_columns": {"Label": ["not potentially unfair", "potentially unfair"]},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
},
|
| 147 |
"tai_safety_research": {
|
| 148 |
"name": "tai_safety_research",
|
|
|
|
| 155 |
"Item Type",
|
| 156 |
"Author",
|
| 157 |
"Publication Title",
|
| 158 |
+
"ID",
|
| 159 |
],
|
| 160 |
+
"label_columns": {"Label": ["TAI safety research", "not TAI safety research"]},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
},
|
| 162 |
"neurips_impact_statement_risks": {
|
| 163 |
"name": "neurips_impact_statement_risks",
|
| 164 |
"description": "",
|
| 165 |
+
"data_columns": ["Paper title", "Paper link", "Impact statement", "ID"],
|
| 166 |
+
"label_columns": {"Label": ["doesn't mention a harmful application", "mentions a harmful application"]},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
},
|
| 168 |
"overruling": {
|
| 169 |
"name": "overruling",
|
| 170 |
"description": "",
|
| 171 |
+
"data_columns": ["Sentence", "ID"],
|
| 172 |
+
"label_columns": {"Label": ["not overruling", "overruling"]},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
},
|
| 174 |
"systematic_review_inclusion": {
|
| 175 |
"name": "systematic_review_inclusion",
|
| 176 |
"description": "",
|
| 177 |
+
"data_columns": ["Title", "Abstract", "Authors", "Journal", "ID"],
|
| 178 |
+
"label_columns": {"Label": ["included", "not included"]},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
},
|
| 180 |
"one_stop_english": {
|
| 181 |
"name": "one_stop_english",
|
| 182 |
"description": "",
|
| 183 |
+
"data_columns": ["Article", "ID"],
|
| 184 |
+
"label_columns": {"Label": ["advanced", "elementary", "intermediate"]},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
},
|
| 186 |
"tweet_eval_hate": {
|
| 187 |
"name": "tweet_eval_hate",
|
| 188 |
"description": "",
|
| 189 |
+
"data_columns": ["Tweet", "ID"],
|
| 190 |
+
"label_columns": {"Label": ["hate speech", "not hate speech"]},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
},
|
| 192 |
"twitter_complaints": {
|
| 193 |
"name": "twitter_complaints",
|
| 194 |
"description": "",
|
| 195 |
+
"data_columns": ["Tweet text", "ID"],
|
| 196 |
+
"label_columns": {"Label": ["complaint", "no complaint"]},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
},
|
| 198 |
"semiconductor_org_types": {
|
| 199 |
"name": "semiconductor_org_types",
|
| 200 |
"description": "",
|
| 201 |
+
"data_columns": ["Paper title", "Organization name", "ID"],
|
| 202 |
+
"label_columns": {"Label": ["company", "research institute", "university"]},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
},
|
| 204 |
}
|
| 205 |
|