tarekmasryo commited on
Commit
7098523
Β·
verified Β·
1 Parent(s): 9419020

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -22
README.md CHANGED
@@ -25,43 +25,69 @@ pretty_name: Digital Habits and Mental Health
25
  size_categories:
26
  - 1K<n<10K
27
  ---
 
28
  # 🌐 Digital Habits and Mental Health
29
  ### Behavioral and Digital Wellbeing Dataset (2025)
30
 
31
- A curated dataset exploring how **digital lifestyles** shape **mental wellbeing** β€” linking screen time, phone use, sleep, and psychological factors such as stress, focus, and happiness.
32
- Includes **3,500 anonymized participants** and **24 research-inspired features**, designed for **behavioral research**, **machine learning**, and **explainable AI**.
 
 
 
 
 
 
 
 
 
 
33
 
34
  ---
35
 
36
  ## πŸ“˜ Dataset Overview
37
 
38
  | Field | Description |
39
- |:--|:--|
40
  | **File name** | `Data.csv` |
41
  | **Rows** | 3,500 |
42
  | **Columns** | 24 |
43
  | **Target** | `high_risk_flag` |
 
44
 
45
  ---
46
 
47
  ## 🧠 Feature Groups
48
 
49
- **Demographics:** age Β· gender Β· region Β· income_level Β· education_level
50
- **Digital Behavior:** daily_screen_time Β· phone_unlocks Β· notifications_per_day Β· social_media_hours Β· study_time Β· work_hours
51
- **Mental Health Indicators:** stress_level Β· anxiety_level Β· depression_level Β· happiness_score Β· focus_score Β· productivity_score
52
- **Derived Ratios:** screen_to_sleep_ratio Β· social_work_ratio Β· wellbeing_index
53
- **Target:** `high_risk_flag` β€” binary wellbeing-risk indicator (0 = low, 1 = high)
 
 
 
 
 
 
 
 
 
 
 
54
 
55
  ---
56
 
57
  ## 🎯 Target Definition
58
 
59
- The target variable **`high_risk_flag`** labels individuals at elevated mental-health risk, defined by a composite of:
 
 
60
  - High digital engagement (screen time, unlocks, notifications)
61
- - Elevated stress or anxiety
62
- - Lower happiness/focus scores
 
63
 
64
- Distribution: roughly **15–20 % high-risk**, aligning with behavioral research estimates.
65
 
66
  ---
67
 
@@ -71,34 +97,43 @@ Distribution: roughly **15–20 % high-risk**, aligning with behavioral research
71
  from datasets import load_dataset
72
 
73
  dataset = load_dataset("TarekMasryo/digital-habits-mental-health")
 
 
74
 
75
  ---
76
 
77
  ## πŸ”¬ Research & Applications
78
 
79
- - Predict wellbeing risk from digital patterns
80
  - Correlate stress, sleep, and screen exposure
81
- - Build explainable models (SHAP / LIME)
82
- - Segment behavioral profiles by lifestyle balance
83
- - Apply calibration or threshold tuning for decision systems
84
 
85
  ---
86
 
87
  ## 🧩 Reproducibility
88
 
89
  - No missing or duplicate values
90
- - Deterministic preprocessing and schema
 
91
  - Compatible with Kaggle, Colab, and Jupyter
92
 
93
  ---
94
 
95
- ---
96
-
97
  ## 🧭 Ethical Considerations
98
- Educational/research dataset only β€” **not** for clinical use, diagnosis, or treatment.
 
 
 
 
99
 
100
  ## πŸ“š Citation
 
101
  Please cite the dataset URL on Hugging Face and the license below when using this data.
102
 
103
- ## πŸ“œ License
104
- **CC BY 4.0 (Attribution)** β€” Free to share and adapt with attribution.
 
 
 
 
25
  size_categories:
26
  - 1K<n<10K
27
  ---
28
+
29
  # 🌐 Digital Habits and Mental Health
30
  ### Behavioral and Digital Wellbeing Dataset (2025)
31
 
32
+ A synthetic dataset exploring how **digital lifestyles** shape **mental wellbeing** β€” linking screen time, phone use, sleep patterns, and psychological factors such as stress, focus, and happiness.
33
+ Includes **3,500 fully synthetic records** and **24 research-inspired features**, designed for **behavioral analytics**, **machine learning**, and **explainable AI**.
34
+
35
+ ---
36
+
37
+ ## πŸ”Ž Important Note on Scoring
38
+
39
+ Psychological and behavioral indicators
40
+ (e.g., `anxiety_score`, `depression_score`, `stress_level`, `happiness_score`, `focus_score`, `productivity_score`, `digital_dependence_score`)
41
+ are generated as **continuous synthetic scores modeled on a broad 0–100 range**, not fixed 0–10 Likert items.
42
+
43
+ This provides richer variance and enhances suitability for ML models and interpretability techniques.
44
 
45
  ---
46
 
47
  ## πŸ“˜ Dataset Overview
48
 
49
  | Field | Description |
50
+ |------|-------------|
51
  | **File name** | `Data.csv` |
52
  | **Rows** | 3,500 |
53
  | **Columns** | 24 |
54
  | **Target** | `high_risk_flag` |
55
+ | **Type** | Tabular (Synthetic) |
56
 
57
  ---
58
 
59
  ## 🧠 Feature Groups
60
 
61
+ ### Demographics
62
+ `age`, `gender`, `region`, `income_level`, `education_level`
63
+
64
+ ### Digital Behavior
65
+ `device_hours_per_day`, `phone_unlocks`, `notifications_per_day`,
66
+ `social_media_hours`, `daily_screen_time`, `study_time`, `work_hours_per_day`
67
+
68
+ ### Mental Health Indicators
69
+ `stress_level`, `anxiety_score`, `depression_score`,
70
+ `happiness_score`, `focus_score`, `productivity_score`, `sleep_quality`
71
+
72
+ ### Additional Behavioral Metrics
73
+ `digital_dependence_score`, `risk_exposure_score`
74
+
75
+ ### Target
76
+ `high_risk_flag` β€” binary wellbeing-risk indicator (0 = low, 1 = high)
77
 
78
  ---
79
 
80
  ## 🎯 Target Definition
81
 
82
+ The target variable **`high_risk_flag`** identifies individuals with elevated wellbeing risk.
83
+ It is computed through a composite scoring process blending:
84
+
85
  - High digital engagement (screen time, unlocks, notifications)
86
+ - Elevated stress/anxiety
87
+ - Low focus or happiness
88
+ - Behavioral intensity patterns
89
 
90
+ Distribution: **15–20% high-risk**, aligned with behavioral research estimates.
91
 
92
  ---
93
 
 
97
  from datasets import load_dataset
98
 
99
  dataset = load_dataset("TarekMasryo/digital-habits-mental-health")
100
+ df = dataset["train"].to_pandas()
101
+ ```
102
 
103
  ---
104
 
105
  ## πŸ”¬ Research & Applications
106
 
107
+ - Predict digital wellbeing risk
108
  - Correlate stress, sleep, and screen exposure
109
+ - Build explainable AI models (SHAP / LIME)
110
+ - Behavioral segmentation and pattern analysis
111
+ - Threshold tuning and calibration for decision systems
112
 
113
  ---
114
 
115
  ## 🧩 Reproducibility
116
 
117
  - No missing or duplicate values
118
+ - Deterministic synthetic generation
119
+ - Fully ML-ready schema
120
  - Compatible with Kaggle, Colab, and Jupyter
121
 
122
  ---
123
 
 
 
124
  ## 🧭 Ethical Considerations
125
+
126
+ This dataset is **synthetic** and intended for **educational and research purposes only** β€”
127
+ not for clinical, diagnostic, or therapeutic use.
128
+
129
+ ---
130
 
131
  ## πŸ“š Citation
132
+
133
  Please cite the dataset URL on Hugging Face and the license below when using this data.
134
 
135
+ ---
136
+
137
+ ## πŸ“œ License
138
+ **CC BY 4.0 (Attribution Required)**
139
+ Free to use, share, and modify with proper attribution.