tarekmasryo commited on
Commit
a833750
Β·
verified Β·
1 Parent(s): 4c937e9

Upload 8 files

Browse files
.gitattributes CHANGED
@@ -57,3 +57,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ data/hospital_deterioration_hourly_panel.csv filter=lfs diff=lfs merge=lfs -text
61
+ data/hospital_deterioration_ml_ready.csv filter=lfs diff=lfs merge=lfs -text
62
+ data/labs_timeseries.csv filter=lfs diff=lfs merge=lfs -text
63
+ data/vitals_timeseries.csv filter=lfs diff=lfs merge=lfs -text
LICENSE.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Creative Commons Attribution 4.0 International (CC BY 4.0)
2
+
3
+ You are free to:
4
+ β€’ Share β€” copy and redistribute the material in any medium or format.
5
+ β€’ Adapt β€” remix, transform, and build upon the material for any purpose, even commercially.
6
+
7
+ Under the following terms:
8
+ β€’ Attribution β€” You must give appropriate credit, provide a link to the license,
9
+ and indicate if changes were made, without suggesting endorsement.
10
+
11
+ Full license text: https://creativecommons.org/licenses/by/4.0/
12
+
13
+ Β© 2025 Tarek Masryo
14
+ This dataset is released under the CC BY 4.0 International license.
README.md CHANGED
@@ -1,3 +1,226 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - tabular-classification
5
+ - time-series-forecasting
6
+ language:
7
+ - en
8
+ tags:
9
+ - healthcare
10
+ - clinical
11
+ - hospital
12
+ - early warning
13
+ - sepsis
14
+ - deterioration
15
+ - time series
16
+ - tabular data
17
+ - machine learning
18
+ - classification
19
+ - risk prediction
20
+ - synthetic data
21
+ - open dataset
22
+ - kaggle
23
+ pretty_name: Hospital Deterioration β€” Simulated Early Warning
24
+ size_categories:
25
+ - 100K<n<1M
26
+ ---
27
+
28
+ # πŸ₯ Hospital Deterioration β€” Simulated Early Warning
29
+ ### Clinical Time-Series Benchmark for Early Warning Models
30
+
31
+ A fully simulated **hospital cohort** for building and testing **early warning models** and **clinical deterioration risk scores**.
32
+ Each admission includes up to **72 hours** of hourly data: vitals, labs, patient context, and multiple deterioration outcomes β€” with a main label for **β€œdeterioration in the next 12 hours”**.
33
+
34
+ All records are **fully simulated**, **internally consistent**, and contain **no missing values**, making the dataset directly usable for **machine learning** and **time-series modeling**.
35
+
36
+ ---
37
+
38
+ ## ⚠️ Simulation & Privacy
39
+
40
+ - No row corresponds to a real patient or a real hospital.
41
+ - All values are generated through a simulation pipeline designed to create **plausible clinical patterns**, not to reproduce real EHR data.
42
+ - The dataset is intended for **research, education, and prototyping**, not for real clinical decision-making.
43
+
44
+ ---
45
+
46
+ ## πŸ“˜ Dataset Overview
47
+
48
+ | Field | Description |
49
+ |---------------|-----------------------------------------------------------------------------|
50
+ | **Files** | `patients.csv`, `vitals_timeseries.csv`, `labs_timeseries.csv`, `hospital_deterioration_hourly_panel.csv`, `hospital_deterioration_ml_ready.csv` |
51
+ | **Patients** | 10,000 admissions (one row per patient in `patients.csv`) |
52
+ | **Time span** | Up to 72 hours of follow-up per admission (`hour_from_admission` = 0–71) |
53
+ | **Granularity** | Hourly time series per patient (vitals, labs, labels) |
54
+ | **Main target** | `deterioration_next_12h` (binary label, 0/1) |
55
+ | **Type** | Tabular / time-series (simulated) |
56
+
57
+ ---
58
+
59
+ ## 🧠 Feature Groups
60
+
61
+ ### 🧍 Patient-Level Features (`patients.csv`)
62
+
63
+ - `patient_id`
64
+ - `age`, `gender`
65
+ - `comorbidity_index`
66
+ - `admission_type` (ED / Elective / Transfer)
67
+ - `baseline_risk_score` (latent baseline deterioration risk, 0–1)
68
+ - `los_hours` (length of stay, 12–72 hours)
69
+ - Deterioration summary outcomes:
70
+ - `deterioration_event`
71
+ - `deterioration_within_12h_from_admission`
72
+ - `deterioration_hour` (or -1 if no event)
73
+
74
+ ---
75
+
76
+ ### πŸ“‰ Hourly Vitals (`vitals_timeseries.csv`)
77
+
78
+ Per `(patient_id, hour_from_admission)`:
79
+
80
+ - `heart_rate`, `respiratory_rate`
81
+ - `spo2_pct`, `temperature_c`
82
+ - `systolic_bp`, `diastolic_bp`
83
+ - `oxygen_device`, `oxygen_flow`
84
+ - `mobility_score`
85
+ - `nurse_alert`
86
+
87
+ **Consistency rule:**
88
+ When `oxygen_device == "none"`, `oxygen_flow` is always `0.0`.
89
+
90
+ ---
91
+
92
+ ### πŸ§ͺ Hourly Labs (`labs_timeseries.csv`)
93
+
94
+ Per `(patient_id, hour_from_admission)`:
95
+
96
+ - `wbc_count`
97
+ - `lactate`
98
+ - `creatinine`
99
+ - `crp_level`
100
+ - `hemoglobin`
101
+ - `sepsis_risk_score` (latent hourly sepsis risk, 0–1)
102
+
103
+ ---
104
+
105
+ ### 🧾 Joined Panel & ML-Ready View
106
+
107
+ - `hospital_deterioration_hourly_panel.csv`
108
+ - One row per `(patient_id, hour_from_admission)`
109
+ - Joins **vitals + labs + patient-level features + all deterioration labels**
110
+ - Useful for custom label definitions, multi-task learning, and advanced feature engineering.
111
+
112
+ - `hospital_deterioration_ml_ready.csv`
113
+ - Same hourly granularity
114
+ - **Features only** (vitals, labs, static features)
115
+ - **Single target**: `deterioration_next_12h` (0/1)
116
+ - Recommended entry point for most ML tasks.
117
+
118
+ ---
119
+
120
+ ## 🎯 Target Definition β€” `deterioration_next_12h`
121
+
122
+ The main label is:
123
+
124
+ - `deterioration_next_12h = 1`
125
+ if a deterioration event happens **after the current hour** and **within the next 12 hours**.
126
+
127
+ - `deterioration_next_12h = 0`
128
+ if:
129
+ - there is **no event** in the stay, or
130
+ - the event is happening **now**, or
131
+ - it happens **more than 12 hours** later.
132
+
133
+ This framing mirrors real-world **early warning systems**:
134
+ the model should trigger an alert **before** the deterioration happens, not at the same time.
135
+
136
+ ---
137
+
138
+ ## πŸš€ Example Usage
139
+
140
+ ```python
141
+ from datasets import load_dataset
142
+
143
+ dataset = load_dataset("TarekMasryo/hospital-deterioration-early-warning")
144
+
145
+ # Load ML-ready split as a pandas DataFrame
146
+ df = dataset["train"].to_pandas()
147
+
148
+ X = df.drop(columns=["deterioration_next_12h"])
149
+ y = df["deterioration_next_12h"]
150
+
151
+ print(X.shape, y.mean())
152
+ ```
153
+
154
+ To reconstruct a full hourly panel from separate files (if you export them):
155
+
156
+ ```python
157
+ import pandas as pd
158
+
159
+ patients = pd.read_csv("patients.csv")
160
+ vitals = pd.read_csv("vitals_timeseries.csv")
161
+ labs = pd.read_csv("labs_timeseries.csv")
162
+
163
+ panel = (
164
+ vitals
165
+ .merge(labs, on=["patient_id", "hour_from_admission"], how="inner")
166
+ .merge(patients, on="patient_id", how="left")
167
+ )
168
+
169
+ print(panel.shape)
170
+ ```
171
+
172
+ ---
173
+
174
+ ## πŸ”¬ Research & Applications
175
+
176
+ - Early warning models for **clinical deterioration**
177
+ - Sepsis and high-risk trajectory modeling
178
+ - Sequence models over **hourly vitals + labs**
179
+ - Risk score calibration and interpretability (e.g., SHAP, partial dependence)
180
+ - Threshold tuning and policy design (balancing recall vs false alarms)
181
+ - Teaching end-to-end **clinical ML pipelines** without real-patient data
182
+
183
+ ---
184
+
185
+ ## 🧩 Reproducibility
186
+
187
+ - No missing values
188
+ - Clean numeric + categorical schema
189
+ - Hourly-aligned time indexing (`hour_from_admission`)
190
+ - Suitable for:
191
+ - Classic ML (tree-based models, logistic regression)
192
+ - Deep learning (RNNs, Temporal CNNs, Transformers)
193
+ - Survival-like / time-to-event framing with custom labels
194
+
195
+ ---
196
+
197
+ ## 🧭 Ethical Considerations
198
+
199
+ - This dataset is **simulated** and must **not** be used for clinical decisions.
200
+ - Patterns are **plausible**, not calibrated to any specific hospital, region, or population.
201
+ - Any model trained on this data requires:
202
+ - Validation on real EHR data
203
+ - Clinical oversight
204
+ - Regulatory and ethical review before deployment.
205
+
206
+ Treat this dataset as a **simulation benchmark** and a **teaching tool**, not as a substitute for real-world evidence.
207
+
208
+ ---
209
+
210
+ ## πŸ“š Citation
211
+
212
+ If you use this dataset, please cite:
213
+
214
+ > Tarek Masryo. β€œHospital Deterioration β€” Simulated Early Warning.”
215
+ > Simulation benchmark dataset for early clinical deterioration modeling and time-series ML.
216
+
217
+ You may also cite the Hugging Face dataset URL and any associated GitHub repository or notebooks.
218
+
219
+ ---
220
+
221
+ ## πŸ“œ License
222
+
223
+ **CC BY 4.0 (Attribution Required)**
224
+
225
+ Free to use, share, and modify with proper attribution.
226
+ For full license terms: https://creativecommons.org/licenses/by/4.0/
data/hospital_deterioration_hourly_panel.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98817e3f1b3751593ea50f8610785891b7b478a15e4150e682f40ce1ed769fa8
3
+ size 50892395
data/hospital_deterioration_ml_ready.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5656f812cdb968b0464b0533af82f60645ec1958afb3b710d7637744cb3413ad
3
+ size 41797018
data/labs_timeseries.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe2831fb74d56ed4f665bb31ad48c5f7658798bedeb962c9a45cfd2fba94f8c5
3
+ size 17598685
data/patients.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/vitals_timeseries.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79f6cba7bf64345aa25709e6b07836999a71754d2f4e0dbbc247d2144f7b39f1
3
+ size 23947111
docs/data_dictionary.md ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Hospital Deterioration Dataset β€” Data Dictionary
2
+
3
+ This dataset represents a **high-fidelity simulated hospital cohort** designed for
4
+ early-warning and deterioration modeling.
5
+
6
+ The records are generated via a rules-based and probabilistic simulation calibrated
7
+ to typical hospital patterns. They **do not correspond to real patients** and contain
8
+ no identifiable information.
9
+
10
+ - Time is expressed as **hours from admission**.
11
+ - Each patient stay is capped at **72 hours**.
12
+ - All identifiers (`patient_id`) are artificial and non-identifiable.
13
+ - All features are fully observed (no missing values).
14
+
15
+ ---
16
+
17
+ ## 1. `patients.csv` β€” Patient-level static data
18
+
19
+ **Granularity:** one row per patient (10,000 patients).
20
+
21
+ | column_name | type | description | allowed_values / range | missing_values |
22
+ |-------------------------------------------|-----------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|
23
+ | `patient_id` | int | Unique patient identifier | 1–10,000 | None |
24
+ | `age` | int | Age at admission (years) | 18–90 | None |
25
+ | `gender` | category | Biological sex | `"M"`, `"F"` | None |
26
+ | `comorbidity_index` | int | Aggregate comorbidity burden (higher = more chronic disease) | 0–8 | None |
27
+ | `admission_type` | category | Admission route to the hospital | `"ED"`, `"Elective"`, `"Transfer"` | None |
28
+ | `baseline_risk_score` | float | Latent **baseline deterioration risk** at admission on a 0–1 scale (simulation parameter, not a clinical score) | ~0.03–0.98 | None |
29
+ | `los_hours` | int | Length of stay in hours (capped at 72 hours) | 12–72 | None |
30
+ | `deterioration_event` | int (0/1) | Indicator for any clinical deterioration event during the stay | 0 = no event, 1 = at least one event | None |
31
+ | `deterioration_within_12h_from_admission` | int (0/1) | Deterioration event occurs within the first 12 hours from admission | 0, 1 | None |
32
+ | `deterioration_hour` | int | Hour-from-admission of the **first** deterioration event; `-1` means no event during the stay | -1 (no event) or 0–(los_hours - 1) (up to 71 in this dataset) | None |
33
+
34
+ ---
35
+
36
+ ## 2. `vitals_timeseries.csv` β€” Hourly vital signs
37
+
38
+ **Granularity:** one row per `(patient_id, hour_from_admission)` for vital signs.
39
+
40
+ | column_name | type | description | allowed_values / range | missing_values |
41
+ |-----------------------|-----------|-----------------------------------------------------------------------------|----------------------------------------------------------|----------------|
42
+ | `patient_id` | int | Patient identifier (matches `patients.csv`) | 1–10,000 | None |
43
+ | `hour_from_admission` | int | Hour index from admission (0 = admission hour) | 0–(los_hours - 1), up to 71 in this dataset | None |
44
+ | `heart_rate` | float | Heart rate at that hour (beats per minute) | ~40–180 | None |
45
+ | `respiratory_rate` | float | Respiratory rate at that hour (breaths per minute) | ~8–45 | None |
46
+ | `spo2_pct` | float | Peripheral oxygen saturation percentage | ~70–100 | None |
47
+ | `temperature_c` | float | Body temperature in degrees Celsius | ~35.2–40.5 | None |
48
+ | `systolic_bp` | float | Systolic blood pressure (mmHg) | ~70–185 | None |
49
+ | `diastolic_bp` | float | Diastolic blood pressure (mmHg) | ~40–110 | None |
50
+ | `oxygen_device` | category | Type of oxygen delivery device | `"none"`, `"nasal"`, `"mask"`, `"hfnc"`, `"niv"` | None |
51
+ | `oxygen_flow` | float | Oxygen flow rate (liters per minute). Exactly `0.0` whenever `oxygen_device == "none"`, and strictly positive only when an oxygen device is in use. | 0–~60 (only >0 for `"nasal"`, `"mask"`, `"hfnc"`, `"niv"`) | None |
52
+ | `mobility_score` | int | Ordinal mobility score (higher = more independent) | 0–4 (ordinal scale) | None |
53
+ | `nurse_alert` | int (0/1) | Whether a nurse alert was triggered in that hour | 0, 1 | None |
54
+
55
+ ---
56
+
57
+ ## 3. `labs_timeseries.csv` β€” Hourly lab results
58
+
59
+ **Granularity:** one row per `(patient_id, hour_from_admission)` for lab values.
60
+
61
+ | column_name | type | description | allowed_values / range | missing_values |
62
+ |-----------------------|-----------|-----------------------------------------------------------------------------|----------------------------------------------|----------------|
63
+ | `patient_id` | int | Patient identifier (matches `patients.csv`) | 1–10,000 | None |
64
+ | `hour_from_admission` | int | Hour index from admission (aligned with vital signs) | 0–(los_hours - 1), up to 71 in this dataset | None |
65
+ | `wbc_count` | float | White blood cell count (arbitrary clinical units, simulation-based) | ~2–30 | None |
66
+ | `lactate` | float | Serum lactate level (approx. mmol/L) | ~0.5–8.0 | None |
67
+ | `creatinine` | float | Serum creatinine (approx. mg/dL) | ~0.4–4.5 | None |
68
+ | `crp_level` | float | C-reactive protein level (approx. mg/L) | ~0–250 | None |
69
+ | `hemoglobin` | float | Hemoglobin concentration (approx. g/dL) | ~7–17 | None |
70
+ | `sepsis_risk_score` | float | Latent **sepsis risk** score at that hour on a 0–1 scale (simulation parameter) | ~0.02–1.00 | None |
71
+
72
+ ---
73
+
74
+ ## 4. `hospital_deterioration_hourly_panel.csv` β€” Full joined hourly panel
75
+
76
+ **Granularity:** one row per `(patient_id, hour_from_admission)` combining:
77
+
78
+ - Hourly vital signs
79
+ - Hourly lab values
80
+ - Static patient features
81
+ - All deterioration labels
82
+
83
+ This file is convenient for EDA and modeling where you want everything in one table.
84
+
85
+ | column_name | type | description | allowed_values / range | missing_values |
86
+ |-------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|
87
+ | `patient_id` | int | Patient identifier | 1–10,000 | None |
88
+ | `hour_from_admission` | int | Hour index from admission | 0–(los_hours - 1), up to 71 in this dataset | None |
89
+ | `heart_rate` | float | Heart rate (beats per minute) at this hour | ~40–180 | None |
90
+ | `respiratory_rate` | float | Respiratory rate (breaths per minute) | ~8–45 | None |
91
+ | `spo2_pct` | float | Peripheral oxygen saturation (%) | ~70–100 | None |
92
+ | `temperature_c` | float | Body temperature in Β°C | ~35.2–40.5 | None |
93
+ | `systolic_bp` | float | Systolic blood pressure (mmHg) | ~70–185 | None |
94
+ | `diastolic_bp` | float | Diastolic blood pressure (mmHg) | ~40–110 | None |
95
+ | `oxygen_device` | category | Oxygen delivery device | `"none"`, `"nasal"`, `"mask"`, `"hfnc"`, `"niv"` | None |
96
+ | `oxygen_flow` | float | Oxygen flow rate (L/min). Exactly `0.0` whenever `oxygen_device == "none"`, and strictly positive only when an oxygen device is in use. | 0–~60 (only >0 for `"nasal"`, `"mask"`, `"hfnc"`, `"niv"`) | None |
97
+ | `mobility_score` | int | Ordinal mobility score | 0–4 | None |
98
+ | `nurse_alert` | int (0/1) | Nurse alert triggered during this hour | 0, 1 | None |
99
+ | `wbc_count` | float | White blood cell count | ~2–30 | None |
100
+ | `lactate` | float | Serum lactate | ~0.5–8.0 | None |
101
+ | `creatinine` | float | Serum creatinine | ~0.4–4.5 | None |
102
+ | `crp_level` | float | C-reactive protein | ~0–250 | None |
103
+ | `hemoglobin` | float | Hemoglobin | ~7–17 | None |
104
+ | `sepsis_risk_score` | float | Latent sepsis risk score (0–1) | ~0.02–1.00 | None |
105
+ | `age` | int | Age at admission | 18–90 | None |
106
+ | `gender` | category | Biological sex | `"M"`, `"F"` | None |
107
+ | `comorbidity_index` | int | Aggregate comorbidity burden | 0–8 | None |
108
+ | `admission_type` | category | Admission route | `"ED"`, `"Elective"`, `"Transfer"` | None |
109
+ | `baseline_risk_score` | float | Latent baseline deterioration risk at admission on a 0–1 scale (simulation parameter) | ~0.03–0.98 | None |
110
+ | `los_hours` | int | Length of stay in hours | 12–72 | None |
111
+ | `deterioration_event` | int (0/1) | Any deterioration event during the stay | 0, 1 | None |
112
+ | `deterioration_within_12h_from_admission` | int (0/1) | Deterioration occurs within the first 12 hours | 0, 1 | None |
113
+ | `deterioration_hour` | int | Hour of first deterioration event; `-1` = no event | -1 (no event) or 0–(los_hours - 1) | None |
114
+ | `deterioration_next_12h` | int (0/1) | Label: deterioration occurs **after this hour** and **within the next 12 hours** (see definition below) | 0, 1 | None |
115
+
116
+ **Definition of `deterioration_next_12h`:**
117
+
118
+ For a given row with `(patient_id, hour_from_admission = t)` and corresponding `deterioration_hour = h`:
119
+
120
+ - `deterioration_next_12h = 1` if `t < h ≀ t + 12`
121
+ - `deterioration_next_12h = 0` otherwise (including no event in the stay).
122
+
123
+ ---
124
+
125
+ ## 5. `hospital_deterioration_ml_ready.csv` β€” ML-ready classification panel
126
+
127
+ **Granularity:** one row per hourly observation (per patient and `hour_from_admission`).
128
+ **Intended use:** feed directly into ML models for **next-12h deterioration prediction**.
129
+
130
+ This file keeps only **features + target**, and omits identifiers and auxiliary targets to reduce leakage risk.
131
+
132
+ | column_name | type | description | allowed_values / range | missing_values |
133
+ |---------------------------|-----------|-----------------------------------------------------------------------------|----------------------------------------------------------|----------------|
134
+ | `hour_from_admission` | int | Hour index from admission | 0–71 (per-stay capped length in this dataset) | None |
135
+ | `heart_rate` | float | Heart rate (beats per minute) | ~40–180 | None |
136
+ | `respiratory_rate` | float | Respiratory rate (breaths per minute) | ~8–45 | None |
137
+ | `spo2_pct` | float | Peripheral oxygen saturation (%) | ~70–100 | None |
138
+ | `temperature_c` | float | Body temperature (Β°C) | ~35.2–40.5 | None |
139
+ | `systolic_bp` | float | Systolic blood pressure (mmHg) | ~70–185 | None |
140
+ | `diastolic_bp` | float | Diastolic blood pressure (mmHg) | ~40–110 | None |
141
+ | `oxygen_device` | category | Oxygen delivery device | `"none"`, `"nasal"`, `"mask"`, `"hfnc"`, `"niv"` | None |
142
+ | `oxygen_flow` | float | Oxygen flow rate (L/min). Exactly `0.0` whenever `oxygen_device == "none"`, and strictly positive only when an oxygen device is in use. | 0–~60 (only >0 for `"nasal"`, `"mask"`, `"hfnc"`, `"niv"`) | None |
143
+ | `mobility_score` | int | Ordinal mobility score | 0–4 | None |
144
+ | `nurse_alert` | int (0/1) | Nurse alert active in this hour | 0, 1 | None |
145
+ | `wbc_count` | float | White blood cell count | ~2–30 | None |
146
+ | `lactate` | float | Serum lactate | ~0.5–8.0 | None |
147
+ | `creatinine` | float | Serum creatinine | ~0.4–4.5 | None |
148
+ | `crp_level` | float | C-reactive protein | ~0–250 | None |
149
+ | `hemoglobin` | float | Hemoglobin | ~7–17 | None |
150
+ | `sepsis_risk_score` | float | Latent sepsis risk score (0–1) | ~0.02–1.00 | None |
151
+ | `age` | int | Age at admission | 18–90 | None |
152
+ | `gender` | category | Biological sex | `"M"`, `"F"` | None |
153
+ | `comorbidity_index` | int | Aggregate comorbidity burden | 0–8 | None |
154
+ | `admission_type` | category | Admission route | `"ED"`, `"Elective"`, `"Transfer"` | None |
155
+ | `deterioration_next_12h` | int (0/1) | Target label: deterioration occurs **after this hour** and **within the next 12 hours** | 0, 1 | None |
156
+
157
+ The definition of `deterioration_next_12h` is identical to the one in `hospital_deterioration_hourly_panel.csv`.