Upload 41 files
Browse files- ntu120_xset/b_2/20231223_131341.log +0 -0
- ntu120_xset/b_2/20231223_131341.log.json +0 -0
- ntu120_xset/b_2/b_2.py +98 -0
- ntu120_xset/b_2/best_pred.pkl +3 -0
- ntu120_xset/b_2/best_top1_acc_epoch_146.pth +3 -0
- ntu120_xset/bm/20231223_131657.log +0 -0
- ntu120_xset/bm/20231223_131657.log.json +0 -0
- ntu120_xset/bm/best_pred.pkl +3 -0
- ntu120_xset/bm/best_top1_acc_epoch_143.pth +3 -0
- ntu120_xset/bm/bm.py +98 -0
- ntu120_xset/j_1/20231223_131457.log +0 -0
- ntu120_xset/j_1/20231223_131457.log.json +0 -0
- ntu120_xset/j_1/best_pred.pkl +3 -0
- ntu120_xset/j_1/best_top1_acc_epoch_148.pth +3 -0
- ntu120_xset/j_1/j_1.py +96 -0
- ntu120_xset/j_2/20240920_162944.log +0 -0
- ntu120_xset/j_2/20240920_162944.log.json +0 -0
- ntu120_xset/j_2/best_pred.pkl +3 -0
- ntu120_xset/j_2/best_top1_acc_epoch_150.pth +3 -0
- ntu120_xset/j_2/j_2.py +96 -0
- ntu120_xset/jm/20231223_131708.log +0 -0
- ntu120_xset/jm/20231223_131708.log.json +0 -0
- ntu120_xset/jm/best_pred.pkl +3 -0
- ntu120_xset/jm/best_top1_acc_epoch_150.pth +3 -0
- ntu120_xset/jm/jm.py +96 -0
- ntu120_xset/k_1/20231223_131509.log +0 -0
- ntu120_xset/k_1/20231223_131509.log.json +0 -0
- ntu120_xset/k_1/best_pred.pkl +3 -0
- ntu120_xset/k_1/best_top1_acc_epoch_147.pth +3 -0
- ntu120_xset/k_1/k_1.py +98 -0
- ntu120_xset/k_2/20231225_153958.log +0 -0
- ntu120_xset/k_2/20231225_153958.log.json +0 -0
- ntu120_xset/k_2/best_pred.pkl +3 -0
- ntu120_xset/k_2/best_top1_acc_epoch_141.pth +3 -0
- ntu120_xset/k_2/k_2.py +98 -0
- ntu120_xset/km/20231223_131720.log +0 -0
- ntu120_xset/km/20231223_131720.log.json +0 -0
- ntu120_xset/km/best_pred.pkl +3 -0
- ntu120_xset/km/best_top1_acc_epoch_145.pth +3 -0
- ntu120_xset/km/km.py +98 -0
- ntu120_xset/ntu120_xset_ensemble.py +65 -0
ntu120_xset/b_2/20231223_131341.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/b_2/20231223_131341.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/b_2/b_2.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'b'
|
| 2 |
+
graph = 'nturgb+d'
|
| 3 |
+
work_dir = './work_dirs/test_prototype/ntu120_xset/b_2'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN_7_1_1',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_7_1_1',
|
| 8 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 9 |
+
graph_cfg=dict(
|
| 10 |
+
layout='nturgb+d',
|
| 11 |
+
mode='random',
|
| 12 |
+
num_filter=8,
|
| 13 |
+
init_off=0.04,
|
| 14 |
+
init_std=0.02)),
|
| 15 |
+
cls_head=dict(type='SimpleHead_7_4_3', num_classes=120, in_channels=384))
|
| 16 |
+
dataset_type = 'PoseDataset'
|
| 17 |
+
ann_file = '/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl'
|
| 18 |
+
train_pipeline = [
|
| 19 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 20 |
+
dict(type='RandomRot', theta=0.2),
|
| 21 |
+
dict(type='Spatial_Flip', dataset='nturgb+d', p=0.5),
|
| 22 |
+
dict(type='GenSkeFeat', feats=['b']),
|
| 23 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 24 |
+
dict(type='FormatGCNInput'),
|
| 25 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 26 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 27 |
+
]
|
| 28 |
+
val_pipeline = [
|
| 29 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 30 |
+
dict(type='GenSkeFeat', feats=['b']),
|
| 31 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 32 |
+
dict(type='FormatGCNInput'),
|
| 33 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 34 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 35 |
+
]
|
| 36 |
+
test_pipeline = [
|
| 37 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 38 |
+
dict(type='GenSkeFeat', feats=['b']),
|
| 39 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 40 |
+
dict(type='FormatGCNInput'),
|
| 41 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 42 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 43 |
+
]
|
| 44 |
+
data = dict(
|
| 45 |
+
videos_per_gpu=16,
|
| 46 |
+
workers_per_gpu=4,
|
| 47 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 48 |
+
train=dict(
|
| 49 |
+
type='PoseDataset',
|
| 50 |
+
ann_file=
|
| 51 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 52 |
+
pipeline=[
|
| 53 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 54 |
+
dict(type='RandomRot', theta=0.2),
|
| 55 |
+
dict(type='Spatial_Flip', dataset='nturgb+d', p=0.5),
|
| 56 |
+
dict(type='GenSkeFeat', feats=['b']),
|
| 57 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 58 |
+
dict(type='FormatGCNInput'),
|
| 59 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 60 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 61 |
+
],
|
| 62 |
+
split='xset_train'),
|
| 63 |
+
val=dict(
|
| 64 |
+
type='PoseDataset',
|
| 65 |
+
ann_file=
|
| 66 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 67 |
+
pipeline=[
|
| 68 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 69 |
+
dict(type='GenSkeFeat', feats=['b']),
|
| 70 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 71 |
+
dict(type='FormatGCNInput'),
|
| 72 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 73 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 74 |
+
],
|
| 75 |
+
split='xset_val'),
|
| 76 |
+
test=dict(
|
| 77 |
+
type='PoseDataset',
|
| 78 |
+
ann_file=
|
| 79 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 82 |
+
dict(type='GenSkeFeat', feats=['b']),
|
| 83 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 84 |
+
dict(type='FormatGCNInput'),
|
| 85 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 86 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 87 |
+
],
|
| 88 |
+
split='xset_val'))
|
| 89 |
+
optimizer = dict(
|
| 90 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 91 |
+
optimizer_config = dict(grad_clip=None)
|
| 92 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 93 |
+
total_epochs = 150
|
| 94 |
+
checkpoint_config = dict(interval=1)
|
| 95 |
+
evaluation = dict(interval=1, metrics=['top_k_accuracy'])
|
| 96 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 97 |
+
dist_params = dict(backend='nccl')
|
| 98 |
+
gpu_ids = range(0, 1)
|
ntu120_xset/b_2/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dfaa02fa3fb1bc5134b5b0f6de9219975e409c9f041d4226192922507ace2990
|
| 3 |
+
size 43573230
|
ntu120_xset/b_2/best_top1_acc_epoch_146.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5e13da8ef8b5f82da4828d0d91a69e9e2ef2863c81164bea7eadb096576d36a7
|
| 3 |
+
size 33657446
|
ntu120_xset/bm/20231223_131657.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/bm/20231223_131657.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/bm/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84e82de920e8e276b637c9dd2d61271cfc4cbea0622a11a0e779802a9f89805b
|
| 3 |
+
size 43572354
|
ntu120_xset/bm/best_top1_acc_epoch_143.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99b3cdcf1a5deb1f0181dcb2d4d6dc93535858667c993a4be2ffdaba3230fd44
|
| 3 |
+
size 33657446
|
ntu120_xset/bm/bm.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'bm'
|
| 2 |
+
graph = 'nturgb+d'
|
| 3 |
+
work_dir = './work_dirs/test_prototype/ntu120_xset/bm'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN_7_1_1',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_7_1_1',
|
| 8 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 9 |
+
graph_cfg=dict(
|
| 10 |
+
layout='nturgb+d',
|
| 11 |
+
mode='random',
|
| 12 |
+
num_filter=8,
|
| 13 |
+
init_off=0.04,
|
| 14 |
+
init_std=0.02)),
|
| 15 |
+
cls_head=dict(type='SimpleHead_7_4_3', num_classes=120, in_channels=384))
|
| 16 |
+
dataset_type = 'PoseDataset'
|
| 17 |
+
ann_file = '/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl'
|
| 18 |
+
train_pipeline = [
|
| 19 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 20 |
+
dict(type='RandomRot', theta=0.2),
|
| 21 |
+
dict(type='Spatial_Flip', dataset='nturgb+d', p=0.5),
|
| 22 |
+
dict(type='GenSkeFeat', feats=['bm']),
|
| 23 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 24 |
+
dict(type='FormatGCNInput'),
|
| 25 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 26 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 27 |
+
]
|
| 28 |
+
val_pipeline = [
|
| 29 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 30 |
+
dict(type='GenSkeFeat', feats=['bm']),
|
| 31 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 32 |
+
dict(type='FormatGCNInput'),
|
| 33 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 34 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 35 |
+
]
|
| 36 |
+
test_pipeline = [
|
| 37 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 38 |
+
dict(type='GenSkeFeat', feats=['bm']),
|
| 39 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 40 |
+
dict(type='FormatGCNInput'),
|
| 41 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 42 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 43 |
+
]
|
| 44 |
+
data = dict(
|
| 45 |
+
videos_per_gpu=16,
|
| 46 |
+
workers_per_gpu=4,
|
| 47 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 48 |
+
train=dict(
|
| 49 |
+
type='PoseDataset',
|
| 50 |
+
ann_file=
|
| 51 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 52 |
+
pipeline=[
|
| 53 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 54 |
+
dict(type='RandomRot', theta=0.2),
|
| 55 |
+
dict(type='Spatial_Flip', dataset='nturgb+d', p=0.5),
|
| 56 |
+
dict(type='GenSkeFeat', feats=['bm']),
|
| 57 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 58 |
+
dict(type='FormatGCNInput'),
|
| 59 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 60 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 61 |
+
],
|
| 62 |
+
split='xset_train'),
|
| 63 |
+
val=dict(
|
| 64 |
+
type='PoseDataset',
|
| 65 |
+
ann_file=
|
| 66 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 67 |
+
pipeline=[
|
| 68 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 69 |
+
dict(type='GenSkeFeat', feats=['bm']),
|
| 70 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 71 |
+
dict(type='FormatGCNInput'),
|
| 72 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 73 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 74 |
+
],
|
| 75 |
+
split='xset_val'),
|
| 76 |
+
test=dict(
|
| 77 |
+
type='PoseDataset',
|
| 78 |
+
ann_file=
|
| 79 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 82 |
+
dict(type='GenSkeFeat', feats=['bm']),
|
| 83 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 84 |
+
dict(type='FormatGCNInput'),
|
| 85 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 86 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 87 |
+
],
|
| 88 |
+
split='xset_val'))
|
| 89 |
+
optimizer = dict(
|
| 90 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 91 |
+
optimizer_config = dict(grad_clip=None)
|
| 92 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 93 |
+
total_epochs = 150
|
| 94 |
+
checkpoint_config = dict(interval=1)
|
| 95 |
+
evaluation = dict(interval=1, metrics=['top_k_accuracy'])
|
| 96 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 97 |
+
dist_params = dict(backend='nccl')
|
| 98 |
+
gpu_ids = range(0, 1)
|
ntu120_xset/j_1/20231223_131457.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/j_1/20231223_131457.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/j_1/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:126365b090ae8a5eac0cf90455a29a069a0d6cba522394fefef5351aeffb7c27
|
| 3 |
+
size 43571998
|
ntu120_xset/j_1/best_top1_acc_epoch_148.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4dab6f329ff8cb3a401402e51bd9c8be0f0ae0e652e0015ab100fa281205b50d
|
| 3 |
+
size 35500646
|
ntu120_xset/j_1/j_1.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'j'
|
| 2 |
+
graph = 'nturgb+d'
|
| 3 |
+
work_dir = './work_dirs/test_prototype/ntu120_xset/j_1'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN_7_1_1',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_7_1_2',
|
| 8 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 9 |
+
graph_cfg=dict(
|
| 10 |
+
layout='nturgb+d',
|
| 11 |
+
mode='random',
|
| 12 |
+
num_filter=8,
|
| 13 |
+
init_off=0.04,
|
| 14 |
+
init_std=0.02)),
|
| 15 |
+
cls_head=dict(type='SimpleHead_7_4_2', num_classes=120, in_channels=384))
|
| 16 |
+
dataset_type = 'PoseDataset'
|
| 17 |
+
ann_file = '/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl'
|
| 18 |
+
train_pipeline = [
|
| 19 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 20 |
+
dict(type='RandomRot', theta=0.2),
|
| 21 |
+
dict(type='GenSkeFeat', feats=['j']),
|
| 22 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 23 |
+
dict(type='FormatGCNInput'),
|
| 24 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 25 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 26 |
+
]
|
| 27 |
+
val_pipeline = [
|
| 28 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 29 |
+
dict(type='GenSkeFeat', feats=['j']),
|
| 30 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 31 |
+
dict(type='FormatGCNInput'),
|
| 32 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 33 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 34 |
+
]
|
| 35 |
+
test_pipeline = [
|
| 36 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 37 |
+
dict(type='GenSkeFeat', feats=['j']),
|
| 38 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 39 |
+
dict(type='FormatGCNInput'),
|
| 40 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 41 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 42 |
+
]
|
| 43 |
+
data = dict(
|
| 44 |
+
videos_per_gpu=16,
|
| 45 |
+
workers_per_gpu=4,
|
| 46 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 47 |
+
train=dict(
|
| 48 |
+
type='PoseDataset',
|
| 49 |
+
ann_file=
|
| 50 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 51 |
+
pipeline=[
|
| 52 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 53 |
+
dict(type='RandomRot', theta=0.2),
|
| 54 |
+
dict(type='GenSkeFeat', feats=['j']),
|
| 55 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 56 |
+
dict(type='FormatGCNInput'),
|
| 57 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 58 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 59 |
+
],
|
| 60 |
+
split='xset_train'),
|
| 61 |
+
val=dict(
|
| 62 |
+
type='PoseDataset',
|
| 63 |
+
ann_file=
|
| 64 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 65 |
+
pipeline=[
|
| 66 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 67 |
+
dict(type='GenSkeFeat', feats=['j']),
|
| 68 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 69 |
+
dict(type='FormatGCNInput'),
|
| 70 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 71 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 72 |
+
],
|
| 73 |
+
split='xset_val'),
|
| 74 |
+
test=dict(
|
| 75 |
+
type='PoseDataset',
|
| 76 |
+
ann_file=
|
| 77 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 78 |
+
pipeline=[
|
| 79 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 80 |
+
dict(type='GenSkeFeat', feats=['j']),
|
| 81 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 82 |
+
dict(type='FormatGCNInput'),
|
| 83 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 84 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 85 |
+
],
|
| 86 |
+
split='xset_val'))
|
| 87 |
+
optimizer = dict(
|
| 88 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 89 |
+
optimizer_config = dict(grad_clip=None)
|
| 90 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 91 |
+
total_epochs = 150
|
| 92 |
+
checkpoint_config = dict(interval=1)
|
| 93 |
+
evaluation = dict(interval=1, metrics=['top_k_accuracy'])
|
| 94 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 95 |
+
dist_params = dict(backend='nccl')
|
| 96 |
+
gpu_ids = range(0, 1)
|
ntu120_xset/j_2/20240920_162944.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/j_2/20240920_162944.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/j_2/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3377e356f45a027015f662cc8e603d0888c734c96606f538344510640ed7d175
|
| 3 |
+
size 43568628
|
ntu120_xset/j_2/best_top1_acc_epoch_150.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:59021245430269bf2817118569fa1a227af07105c6bfccf0a17a7ebc3bb0e304
|
| 3 |
+
size 35500646
|
ntu120_xset/j_2/j_2.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'j'
|
| 2 |
+
graph = 'nturgb+d'
|
| 3 |
+
work_dir = './work_dirs/test_prototype/ntu120_xset/j_2'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN_7_1_1',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_7_1_2',
|
| 8 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 9 |
+
graph_cfg=dict(
|
| 10 |
+
layout='nturgb+d',
|
| 11 |
+
mode='random',
|
| 12 |
+
num_filter=8,
|
| 13 |
+
init_off=0.04,
|
| 14 |
+
init_std=0.02)),
|
| 15 |
+
cls_head=dict(type='SimpleHead_7_4_2', num_classes=120, in_channels=384))
|
| 16 |
+
dataset_type = 'PoseDataset'
|
| 17 |
+
ann_file = '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl'
|
| 18 |
+
train_pipeline = [
|
| 19 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 20 |
+
dict(type='RandomRot', theta=0.2),
|
| 21 |
+
dict(type='GenSkeFeat', feats=['j']),
|
| 22 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 23 |
+
dict(type='FormatGCNInput'),
|
| 24 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 25 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 26 |
+
]
|
| 27 |
+
val_pipeline = [
|
| 28 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 29 |
+
dict(type='GenSkeFeat', feats=['j']),
|
| 30 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 31 |
+
dict(type='FormatGCNInput'),
|
| 32 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 33 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 34 |
+
]
|
| 35 |
+
test_pipeline = [
|
| 36 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 37 |
+
dict(type='GenSkeFeat', feats=['j']),
|
| 38 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 39 |
+
dict(type='FormatGCNInput'),
|
| 40 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 41 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 42 |
+
]
|
| 43 |
+
data = dict(
|
| 44 |
+
videos_per_gpu=16,
|
| 45 |
+
workers_per_gpu=4,
|
| 46 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 47 |
+
train=dict(
|
| 48 |
+
type='PoseDataset',
|
| 49 |
+
ann_file=
|
| 50 |
+
'/data1/hao.wang/reproducation/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 51 |
+
pipeline=[
|
| 52 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 53 |
+
dict(type='RandomRot', theta=0.2),
|
| 54 |
+
dict(type='GenSkeFeat', feats=['j']),
|
| 55 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 56 |
+
dict(type='FormatGCNInput'),
|
| 57 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 58 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 59 |
+
],
|
| 60 |
+
split='xset_train'),
|
| 61 |
+
val=dict(
|
| 62 |
+
type='PoseDataset',
|
| 63 |
+
ann_file=
|
| 64 |
+
'/data1/hao.wang/reproducation/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 65 |
+
pipeline=[
|
| 66 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 67 |
+
dict(type='GenSkeFeat', feats=['j']),
|
| 68 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 69 |
+
dict(type='FormatGCNInput'),
|
| 70 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 71 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 72 |
+
],
|
| 73 |
+
split='xset_val'),
|
| 74 |
+
test=dict(
|
| 75 |
+
type='PoseDataset',
|
| 76 |
+
ann_file=
|
| 77 |
+
'/data1/hao.wang/reproducation/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 78 |
+
pipeline=[
|
| 79 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 80 |
+
dict(type='GenSkeFeat', feats=['j']),
|
| 81 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 82 |
+
dict(type='FormatGCNInput'),
|
| 83 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 84 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 85 |
+
],
|
| 86 |
+
split='xset_val'))
|
| 87 |
+
optimizer = dict(
|
| 88 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 89 |
+
optimizer_config = dict(grad_clip=None)
|
| 90 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 91 |
+
total_epochs = 150
|
| 92 |
+
checkpoint_config = dict(interval=1)
|
| 93 |
+
evaluation = dict(interval=1, metrics=['top_k_accuracy'])
|
| 94 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 95 |
+
dist_params = dict(backend='nccl')
|
| 96 |
+
gpu_ids = range(0, 1)
|
ntu120_xset/jm/20231223_131708.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/jm/20231223_131708.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/jm/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ef6c9719f76e4b2b071859717826ce53f3bb9683bf4ffca7b2183b6f373e7128
|
| 3 |
+
size 43572115
|
ntu120_xset/jm/best_top1_acc_epoch_150.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:41c426eab0e26b5dfda66b4a16d6a1e1a771e3f13052f181f6ad33531ca1f802
|
| 3 |
+
size 35500646
|
ntu120_xset/jm/jm.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'jm'
|
| 2 |
+
graph = 'nturgb+d'
|
| 3 |
+
work_dir = './work_dirs/test_prototype/ntu120_xset/jm'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN_7_1_1',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_7_1_2',
|
| 8 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 9 |
+
graph_cfg=dict(
|
| 10 |
+
layout='nturgb+d',
|
| 11 |
+
mode='random',
|
| 12 |
+
num_filter=8,
|
| 13 |
+
init_off=0.04,
|
| 14 |
+
init_std=0.02)),
|
| 15 |
+
cls_head=dict(type='SimpleHead_7_4_2', num_classes=120, in_channels=384))
|
| 16 |
+
dataset_type = 'PoseDataset'
|
| 17 |
+
ann_file = '/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl'
|
| 18 |
+
train_pipeline = [
|
| 19 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 20 |
+
dict(type='RandomRot', theta=0.2),
|
| 21 |
+
dict(type='GenSkeFeat', feats=['jm']),
|
| 22 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 23 |
+
dict(type='FormatGCNInput'),
|
| 24 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 25 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 26 |
+
]
|
| 27 |
+
val_pipeline = [
|
| 28 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 29 |
+
dict(type='GenSkeFeat', feats=['jm']),
|
| 30 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 31 |
+
dict(type='FormatGCNInput'),
|
| 32 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 33 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 34 |
+
]
|
| 35 |
+
test_pipeline = [
|
| 36 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 37 |
+
dict(type='GenSkeFeat', feats=['jm']),
|
| 38 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 39 |
+
dict(type='FormatGCNInput'),
|
| 40 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 41 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 42 |
+
]
|
| 43 |
+
data = dict(
|
| 44 |
+
videos_per_gpu=16,
|
| 45 |
+
workers_per_gpu=4,
|
| 46 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 47 |
+
train=dict(
|
| 48 |
+
type='PoseDataset',
|
| 49 |
+
ann_file=
|
| 50 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 51 |
+
pipeline=[
|
| 52 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 53 |
+
dict(type='RandomRot', theta=0.2),
|
| 54 |
+
dict(type='GenSkeFeat', feats=['jm']),
|
| 55 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 56 |
+
dict(type='FormatGCNInput'),
|
| 57 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 58 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 59 |
+
],
|
| 60 |
+
split='xset_train'),
|
| 61 |
+
val=dict(
|
| 62 |
+
type='PoseDataset',
|
| 63 |
+
ann_file=
|
| 64 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 65 |
+
pipeline=[
|
| 66 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 67 |
+
dict(type='GenSkeFeat', feats=['jm']),
|
| 68 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 69 |
+
dict(type='FormatGCNInput'),
|
| 70 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 71 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 72 |
+
],
|
| 73 |
+
split='xset_val'),
|
| 74 |
+
test=dict(
|
| 75 |
+
type='PoseDataset',
|
| 76 |
+
ann_file=
|
| 77 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 78 |
+
pipeline=[
|
| 79 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 80 |
+
dict(type='GenSkeFeat', feats=['jm']),
|
| 81 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 82 |
+
dict(type='FormatGCNInput'),
|
| 83 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 84 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 85 |
+
],
|
| 86 |
+
split='xset_val'))
|
| 87 |
+
optimizer = dict(
|
| 88 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 89 |
+
optimizer_config = dict(grad_clip=None)
|
| 90 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 91 |
+
total_epochs = 150
|
| 92 |
+
checkpoint_config = dict(interval=1)
|
| 93 |
+
evaluation = dict(interval=1, metrics=['top_k_accuracy'])
|
| 94 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 95 |
+
dist_params = dict(backend='nccl')
|
| 96 |
+
gpu_ids = range(0, 1)
|
ntu120_xset/k_1/20231223_131509.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/k_1/20231223_131509.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/k_1/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f8239ec803a9d92f6a6f02e89e2990ed5d4dd271498adcc33e258151f221fcbe
|
| 3 |
+
size 43579216
|
ntu120_xset/k_1/best_top1_acc_epoch_147.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:73b983ca1c1a18c12c55d3c0f087bdb94d18b0a2d09f72ca5484fec40530ffe6
|
| 3 |
+
size 33657446
|
ntu120_xset/k_1/k_1.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'k'
|
| 2 |
+
graph = 'nturgb+d'
|
| 3 |
+
work_dir = './work_dirs/test_prototype/ntu120_xset/k_1'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN_7_1_1',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_7_1_1',
|
| 8 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 9 |
+
graph_cfg=dict(
|
| 10 |
+
layout='nturgb+d',
|
| 11 |
+
mode='random',
|
| 12 |
+
num_filter=8,
|
| 13 |
+
init_off=0.04,
|
| 14 |
+
init_std=0.02)),
|
| 15 |
+
cls_head=dict(type='SimpleHead_7_4_1', num_classes=120, in_channels=384))
|
| 16 |
+
dataset_type = 'PoseDataset'
|
| 17 |
+
ann_file = '/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl'
|
| 18 |
+
train_pipeline = [
|
| 19 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 20 |
+
dict(type='RandomRot', theta=0.2),
|
| 21 |
+
dict(type='Spatial_Flip', dataset='nturgb+d', p=0.5),
|
| 22 |
+
dict(type='GenSkeFeat', feats=['k']),
|
| 23 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 24 |
+
dict(type='FormatGCNInput'),
|
| 25 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 26 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 27 |
+
]
|
| 28 |
+
val_pipeline = [
|
| 29 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 30 |
+
dict(type='GenSkeFeat', feats=['k']),
|
| 31 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 32 |
+
dict(type='FormatGCNInput'),
|
| 33 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 34 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 35 |
+
]
|
| 36 |
+
test_pipeline = [
|
| 37 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 38 |
+
dict(type='GenSkeFeat', feats=['k']),
|
| 39 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 40 |
+
dict(type='FormatGCNInput'),
|
| 41 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 42 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 43 |
+
]
|
| 44 |
+
data = dict(
|
| 45 |
+
videos_per_gpu=16,
|
| 46 |
+
workers_per_gpu=4,
|
| 47 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 48 |
+
train=dict(
|
| 49 |
+
type='PoseDataset',
|
| 50 |
+
ann_file=
|
| 51 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 52 |
+
pipeline=[
|
| 53 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 54 |
+
dict(type='RandomRot', theta=0.2),
|
| 55 |
+
dict(type='Spatial_Flip', dataset='nturgb+d', p=0.5),
|
| 56 |
+
dict(type='GenSkeFeat', feats=['k']),
|
| 57 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 58 |
+
dict(type='FormatGCNInput'),
|
| 59 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 60 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 61 |
+
],
|
| 62 |
+
split='xset_train'),
|
| 63 |
+
val=dict(
|
| 64 |
+
type='PoseDataset',
|
| 65 |
+
ann_file=
|
| 66 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 67 |
+
pipeline=[
|
| 68 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 69 |
+
dict(type='GenSkeFeat', feats=['k']),
|
| 70 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 71 |
+
dict(type='FormatGCNInput'),
|
| 72 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 73 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 74 |
+
],
|
| 75 |
+
split='xset_val'),
|
| 76 |
+
test=dict(
|
| 77 |
+
type='PoseDataset',
|
| 78 |
+
ann_file=
|
| 79 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 82 |
+
dict(type='GenSkeFeat', feats=['k']),
|
| 83 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 84 |
+
dict(type='FormatGCNInput'),
|
| 85 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 86 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 87 |
+
],
|
| 88 |
+
split='xset_val'))
|
| 89 |
+
optimizer = dict(
|
| 90 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 91 |
+
optimizer_config = dict(grad_clip=None)
|
| 92 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 93 |
+
total_epochs = 150
|
| 94 |
+
checkpoint_config = dict(interval=1)
|
| 95 |
+
evaluation = dict(interval=1, metrics=['top_k_accuracy'])
|
| 96 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 97 |
+
dist_params = dict(backend='nccl')
|
| 98 |
+
gpu_ids = range(0, 1)
|
ntu120_xset/k_2/20231225_153958.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/k_2/20231225_153958.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/k_2/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0b1d24c3519eada59fee1212973ae976667120a3cafae0c030cfb4b568f6e76c
|
| 3 |
+
size 43571933
|
ntu120_xset/k_2/best_top1_acc_epoch_141.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:762a2f5c5e3da3575ee54d08625a4aa4e6bf9fb8ec2fb8920c73fe81be791962
|
| 3 |
+
size 33657446
|
ntu120_xset/k_2/k_2.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'k'
|
| 2 |
+
graph = 'nturgb+d'
|
| 3 |
+
work_dir = './work_dirs/test_prototype/ntu120_xset/k_2'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN_7_1_1',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_7_1_1',
|
| 8 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 9 |
+
graph_cfg=dict(
|
| 10 |
+
layout='nturgb+d',
|
| 11 |
+
mode='random',
|
| 12 |
+
num_filter=8,
|
| 13 |
+
init_off=0.04,
|
| 14 |
+
init_std=0.02)),
|
| 15 |
+
cls_head=dict(type='SimpleHead_7_4_1', num_classes=120, in_channels=384))
|
| 16 |
+
dataset_type = 'PoseDataset'
|
| 17 |
+
ann_file = '/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl'
|
| 18 |
+
train_pipeline = [
|
| 19 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 20 |
+
dict(type='RandomRot', theta=0.2),
|
| 21 |
+
dict(type='Spatial_Flip', dataset='nturgb+d', p=0.5),
|
| 22 |
+
dict(type='GenSkeFeat', feats=['k']),
|
| 23 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 24 |
+
dict(type='FormatGCNInput'),
|
| 25 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 26 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 27 |
+
]
|
| 28 |
+
val_pipeline = [
|
| 29 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 30 |
+
dict(type='GenSkeFeat', feats=['k']),
|
| 31 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 32 |
+
dict(type='FormatGCNInput'),
|
| 33 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 34 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 35 |
+
]
|
| 36 |
+
test_pipeline = [
|
| 37 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 38 |
+
dict(type='GenSkeFeat', feats=['k']),
|
| 39 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 40 |
+
dict(type='FormatGCNInput'),
|
| 41 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 42 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 43 |
+
]
|
| 44 |
+
data = dict(
|
| 45 |
+
videos_per_gpu=16,
|
| 46 |
+
workers_per_gpu=4,
|
| 47 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 48 |
+
train=dict(
|
| 49 |
+
type='PoseDataset',
|
| 50 |
+
ann_file=
|
| 51 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 52 |
+
pipeline=[
|
| 53 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 54 |
+
dict(type='RandomRot', theta=0.2),
|
| 55 |
+
dict(type='Spatial_Flip', dataset='nturgb+d', p=0.5),
|
| 56 |
+
dict(type='GenSkeFeat', feats=['k']),
|
| 57 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 58 |
+
dict(type='FormatGCNInput'),
|
| 59 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 60 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 61 |
+
],
|
| 62 |
+
split='xset_train'),
|
| 63 |
+
val=dict(
|
| 64 |
+
type='PoseDataset',
|
| 65 |
+
ann_file=
|
| 66 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 67 |
+
pipeline=[
|
| 68 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 69 |
+
dict(type='GenSkeFeat', feats=['k']),
|
| 70 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 71 |
+
dict(type='FormatGCNInput'),
|
| 72 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 73 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 74 |
+
],
|
| 75 |
+
split='xset_val'),
|
| 76 |
+
test=dict(
|
| 77 |
+
type='PoseDataset',
|
| 78 |
+
ann_file=
|
| 79 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 82 |
+
dict(type='GenSkeFeat', feats=['k']),
|
| 83 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 84 |
+
dict(type='FormatGCNInput'),
|
| 85 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 86 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 87 |
+
],
|
| 88 |
+
split='xset_val'))
|
| 89 |
+
optimizer = dict(
|
| 90 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 91 |
+
optimizer_config = dict(grad_clip=None)
|
| 92 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 93 |
+
total_epochs = 150
|
| 94 |
+
checkpoint_config = dict(interval=1)
|
| 95 |
+
evaluation = dict(interval=1, metrics=['top_k_accuracy'])
|
| 96 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 97 |
+
dist_params = dict(backend='nccl')
|
| 98 |
+
gpu_ids = range(0, 1)
|
ntu120_xset/km/20231223_131720.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/km/20231223_131720.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ntu120_xset/km/best_pred.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f7636d736c05e624059b72783e8beca8ee8ba9c2539b40663e1e37babf8a783
|
| 3 |
+
size 43570624
|
ntu120_xset/km/best_top1_acc_epoch_145.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c2833e283aa25a0a74612a856744e8d9504c71bb93c0678c7f6cc92a7c1a6f0f
|
| 3 |
+
size 33657446
|
ntu120_xset/km/km.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modality = 'km'
|
| 2 |
+
graph = 'nturgb+d'
|
| 3 |
+
work_dir = './work_dirs/test_prototype/ntu120_xset/km'
|
| 4 |
+
model = dict(
|
| 5 |
+
type='RecognizerGCN_7_1_1',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='GCN_7_1_1',
|
| 8 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
| 9 |
+
graph_cfg=dict(
|
| 10 |
+
layout='nturgb+d',
|
| 11 |
+
mode='random',
|
| 12 |
+
num_filter=8,
|
| 13 |
+
init_off=0.04,
|
| 14 |
+
init_std=0.02)),
|
| 15 |
+
cls_head=dict(type='SimpleHead_7_4_1', num_classes=120, in_channels=384))
|
| 16 |
+
dataset_type = 'PoseDataset'
|
| 17 |
+
ann_file = '/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl'
|
| 18 |
+
train_pipeline = [
|
| 19 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 20 |
+
dict(type='RandomRot', theta=0.2),
|
| 21 |
+
dict(type='Spatial_Flip', dataset='nturgb+d', p=0.5),
|
| 22 |
+
dict(type='GenSkeFeat', feats=['km']),
|
| 23 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 24 |
+
dict(type='FormatGCNInput'),
|
| 25 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 26 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 27 |
+
]
|
| 28 |
+
val_pipeline = [
|
| 29 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 30 |
+
dict(type='GenSkeFeat', feats=['km']),
|
| 31 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 32 |
+
dict(type='FormatGCNInput'),
|
| 33 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 34 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 35 |
+
]
|
| 36 |
+
test_pipeline = [
|
| 37 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 38 |
+
dict(type='GenSkeFeat', feats=['km']),
|
| 39 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 40 |
+
dict(type='FormatGCNInput'),
|
| 41 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 42 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 43 |
+
]
|
| 44 |
+
data = dict(
|
| 45 |
+
videos_per_gpu=16,
|
| 46 |
+
workers_per_gpu=4,
|
| 47 |
+
test_dataloader=dict(videos_per_gpu=1),
|
| 48 |
+
train=dict(
|
| 49 |
+
type='PoseDataset',
|
| 50 |
+
ann_file=
|
| 51 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 52 |
+
pipeline=[
|
| 53 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 54 |
+
dict(type='RandomRot', theta=0.2),
|
| 55 |
+
dict(type='Spatial_Flip', dataset='nturgb+d', p=0.5),
|
| 56 |
+
dict(type='GenSkeFeat', feats=['km']),
|
| 57 |
+
dict(type='UniformSampleDecode', clip_len=100),
|
| 58 |
+
dict(type='FormatGCNInput'),
|
| 59 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 60 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 61 |
+
],
|
| 62 |
+
split='xset_train'),
|
| 63 |
+
val=dict(
|
| 64 |
+
type='PoseDataset',
|
| 65 |
+
ann_file=
|
| 66 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 67 |
+
pipeline=[
|
| 68 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 69 |
+
dict(type='GenSkeFeat', feats=['km']),
|
| 70 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=1),
|
| 71 |
+
dict(type='FormatGCNInput'),
|
| 72 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 73 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 74 |
+
],
|
| 75 |
+
split='xset_val'),
|
| 76 |
+
test=dict(
|
| 77 |
+
type='PoseDataset',
|
| 78 |
+
ann_file=
|
| 79 |
+
'/data1/medical/hao.wang/reproduction/hongda.liu/pyskl_data/nturgbd/ntu120_3danno.pkl',
|
| 80 |
+
pipeline=[
|
| 81 |
+
dict(type='PreNormalize3D', align_spine=False),
|
| 82 |
+
dict(type='GenSkeFeat', feats=['km']),
|
| 83 |
+
dict(type='UniformSampleDecode', clip_len=100, num_clips=10),
|
| 84 |
+
dict(type='FormatGCNInput'),
|
| 85 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
| 86 |
+
dict(type='ToTensor', keys=['keypoint'])
|
| 87 |
+
],
|
| 88 |
+
split='xset_val'))
|
| 89 |
+
optimizer = dict(
|
| 90 |
+
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
| 91 |
+
optimizer_config = dict(grad_clip=None)
|
| 92 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
| 93 |
+
total_epochs = 150
|
| 94 |
+
checkpoint_config = dict(interval=1)
|
| 95 |
+
evaluation = dict(interval=1, metrics=['top_k_accuracy'])
|
| 96 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
| 97 |
+
dist_params = dict(backend='nccl')
|
| 98 |
+
gpu_ids = range(0, 1)
|
ntu120_xset/ntu120_xset_ensemble.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from mmcv import load
|
| 2 |
+
import sys
|
| 3 |
+
# Note: please adjust the relative path according to the actual situation.
|
| 4 |
+
sys.path.append('../..')
|
| 5 |
+
from protogcn.smp import *
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
j_1 = load('j_1/best_pred.pkl')
|
| 9 |
+
b_1 = load('b_1/best_pred.pkl')
|
| 10 |
+
k_1 = load('k_1/best_pred.pkl')
|
| 11 |
+
j_2 = load('j_2/best_pred.pkl')
|
| 12 |
+
b_2 = load('b_2/best_pred.pkl')
|
| 13 |
+
k_2 = load('k_2/best_pred.pkl')
|
| 14 |
+
jm = load('jm/best_pred.pkl')
|
| 15 |
+
bm = load('bm/best_pred.pkl')
|
| 16 |
+
km = load('km/best_pred.pkl')
|
| 17 |
+
label = load_label('/data/nturgbd/ntu120_3danno.pkl', 'xset_val')
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
"""
|
| 21 |
+
***************
|
| 22 |
+
InfoGCN v0:
|
| 23 |
+
j jm b bm k km
|
| 24 |
+
2S: 91.23
|
| 25 |
+
4S: 91.51
|
| 26 |
+
6S: 91.89
|
| 27 |
+
***************
|
| 28 |
+
"""
|
| 29 |
+
print('InfoGCN v0:')
|
| 30 |
+
print('j jm b bm k km')
|
| 31 |
+
print('2S')
|
| 32 |
+
fused = comb([j_1, b_1], [1, 1])
|
| 33 |
+
print('Top-1', top1(fused, label))
|
| 34 |
+
|
| 35 |
+
print('4S')
|
| 36 |
+
fused = comb([j_1, b_1, jm, bm], [3, 3, 1, 1])
|
| 37 |
+
print('Top-1', top1(fused, label))
|
| 38 |
+
|
| 39 |
+
print('6S')
|
| 40 |
+
fused = comb([j_1, b_1, k_1, jm, bm, km], [3, 3, 3, 1, 1, 1])
|
| 41 |
+
print('Top-1', top1(fused, label))
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
"""
|
| 45 |
+
***************
|
| 46 |
+
InfoGCN v1:
|
| 47 |
+
j j b b k k
|
| 48 |
+
2S: 91.23
|
| 49 |
+
4S: 91.86
|
| 50 |
+
6S: 92.16
|
| 51 |
+
***************
|
| 52 |
+
"""
|
| 53 |
+
print('InfoGCN v1:')
|
| 54 |
+
print('j j b b k k')
|
| 55 |
+
print('2S')
|
| 56 |
+
fused = comb([j_1, b_1], [1, 1])
|
| 57 |
+
print('Top-1', top1(fused, label))
|
| 58 |
+
|
| 59 |
+
print('4S')
|
| 60 |
+
fused = comb([j_1, b_1, j_2, b_2], [1, 1, 1, 1])
|
| 61 |
+
print('Top-1', top1(fused, label))
|
| 62 |
+
|
| 63 |
+
print('6S')
|
| 64 |
+
fused = comb([j_1, j_2, b_1, b_2, k_1, k_2], [7, 7, 8, 8, 5, 5])
|
| 65 |
+
print('Top-1', top1(fused, label))
|