Update README.md
Browse files
README.md
CHANGED
|
@@ -11,7 +11,7 @@ tags:
|
|
| 11 |
**Model Summary:**
|
| 12 |
|
| 13 |
|
| 14 |
-
Granite-3.3-8B-Base is a decoder-only language model with a 128K token context window. It improves upon Granite-3.1-8B-Base by adding support for Fill-in-the-Middle (FIM) using specialized tokens, enabling the model to generate content conditioned on both prefix and suffix. This makes it well-suited for
|
| 15 |
|
| 16 |
|
| 17 |
|
|
@@ -42,7 +42,7 @@ Then, copy the code snippet below to run the example.
|
|
| 42 |
```python
|
| 43 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 44 |
device = "auto"
|
| 45 |
-
model_path = "ibm-granite/granite-3.3-
|
| 46 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 47 |
# drop device_map if running on CPU
|
| 48 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
|
|
|
| 11 |
**Model Summary:**
|
| 12 |
|
| 13 |
|
| 14 |
+
Granite-3.3-8B-Base is a decoder-only language model with a 128K token context window. It improves upon Granite-3.1-8B-Base by adding support for Fill-in-the-Middle (FIM) using specialized tokens, enabling the model to generate content conditioned on both prefix and suffix. This makes it well-suited for code completion tasks.
|
| 15 |
|
| 16 |
|
| 17 |
|
|
|
|
| 42 |
```python
|
| 43 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 44 |
device = "auto"
|
| 45 |
+
model_path = "ibm-granite/granite-3.3-8b-base"
|
| 46 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 47 |
# drop device_map if running on CPU
|
| 48 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|