Commit
·
30df0c3
1
Parent(s):
2598b16
Upload fine-tuning-example.ipynb
Browse files- fine-tuning-example.ipynb +325 -0
fine-tuning-example.ipynb
ADDED
|
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "e13eff4e-c134-4dac-9523-07b297164250",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Example of Fine-tuning 176 billion Bloom with 8-bit weights\n",
|
| 9 |
+
"\n",
|
| 10 |
+
"This notebook shows an example of how to fine tune Bloom with Low Rank Adapters. Heavily inspired by [Hivemind's work](https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es)"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": null,
|
| 16 |
+
"id": "699e94eb-3ce1-4788-999b-fb6d593ba7e9",
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"!pip install transformers==4.20.1\n",
|
| 21 |
+
"!pip install bitsandbytes-cuda110\n",
|
| 22 |
+
"!pip install datasets"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "markdown",
|
| 27 |
+
"id": "0afea72c-691d-4719-a84a-663f1891af6e",
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"source": [
|
| 30 |
+
"### Load and convert original Bloom structure to 8-bit LoRA\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"You can load an already compressed 8-bit version of Bloom from [joaoalvarenga/bloom-8bit](https://huggingface.co/joaoalvarenga/bloom-8bit), but first we need to make some adaptations into original model structure. Some of the following code is an adaptation from [Hivemind's GPT-J 8-bit fine-tuning notebook](https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es)."
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"cell_type": "code",
|
| 37 |
+
"execution_count": null,
|
| 38 |
+
"id": "aa5f4118-d4d9-474f-ac36-acaadb920c1f",
|
| 39 |
+
"metadata": {},
|
| 40 |
+
"outputs": [],
|
| 41 |
+
"source": [
|
| 42 |
+
"import transformers\n",
|
| 43 |
+
"\n",
|
| 44 |
+
"import torch\n",
|
| 45 |
+
"import torch.nn.functional as F\n",
|
| 46 |
+
"from torch import nn\n",
|
| 47 |
+
"from torch.cuda.amp import custom_fwd, custom_bwd\n",
|
| 48 |
+
"\n",
|
| 49 |
+
"from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise\n",
|
| 50 |
+
"\n",
|
| 51 |
+
"from tqdm.auto import tqdm"
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "code",
|
| 56 |
+
"execution_count": null,
|
| 57 |
+
"id": "cc4f262e-70de-4a06-a5a6-52d1cd5223d3",
|
| 58 |
+
"metadata": {},
|
| 59 |
+
"outputs": [],
|
| 60 |
+
"source": [
|
| 61 |
+
"class FrozenBNBLinear(nn.Module):\n",
|
| 62 |
+
" def __init__(self, weight, absmax, code, bias=None):\n",
|
| 63 |
+
" assert isinstance(bias, nn.Parameter) or bias is None\n",
|
| 64 |
+
" super().__init__()\n",
|
| 65 |
+
" self.out_features, self.in_features = weight.shape\n",
|
| 66 |
+
" self.register_buffer(\"weight\", weight.requires_grad_(False))\n",
|
| 67 |
+
" self.register_buffer(\"absmax\", absmax.requires_grad_(False))\n",
|
| 68 |
+
" self.register_buffer(\"code\", code.requires_grad_(False))\n",
|
| 69 |
+
" self.adapter = None\n",
|
| 70 |
+
" self.bias = bias\n",
|
| 71 |
+
" \n",
|
| 72 |
+
" def forward(self, input):\n",
|
| 73 |
+
" output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)\n",
|
| 74 |
+
" if self.adapter:\n",
|
| 75 |
+
" output += self.adapter(input)\n",
|
| 76 |
+
" return output\n",
|
| 77 |
+
" \n",
|
| 78 |
+
" @classmethod\n",
|
| 79 |
+
" def from_linear(cls, linear: nn.Linear) -> \"FrozenBNBLinear\":\n",
|
| 80 |
+
" weights_int8, state = quantize_blockise_lowmemory(linear.weight)\n",
|
| 81 |
+
" return cls(weights_int8, *state, linear.bias)\n",
|
| 82 |
+
" \n",
|
| 83 |
+
" def __repr__(self):\n",
|
| 84 |
+
" return f\"{self.__class__.__name__}({self.in_features}, {self.out_features})\"\n",
|
| 85 |
+
" \n",
|
| 86 |
+
" \n",
|
| 87 |
+
"class DequantizeAndLinear(torch.autograd.Function): \n",
|
| 88 |
+
" @staticmethod\n",
|
| 89 |
+
" @custom_fwd\n",
|
| 90 |
+
" def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,\n",
|
| 91 |
+
" absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):\n",
|
| 92 |
+
" weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)\n",
|
| 93 |
+
" ctx.save_for_backward(input, weights_quantized, absmax, code)\n",
|
| 94 |
+
" ctx._has_bias = bias is not None\n",
|
| 95 |
+
" return F.linear(input, weights_deq, bias)\n",
|
| 96 |
+
" \n",
|
| 97 |
+
" @staticmethod\n",
|
| 98 |
+
" @custom_bwd\n",
|
| 99 |
+
" def backward(ctx, grad_output: torch.Tensor):\n",
|
| 100 |
+
" assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]\n",
|
| 101 |
+
" input, weights_quantized, absmax, code = ctx.saved_tensors\n",
|
| 102 |
+
" # grad_output: [*batch, out_features]\n",
|
| 103 |
+
" weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)\n",
|
| 104 |
+
" grad_input = grad_output @ weights_deq\n",
|
| 105 |
+
" grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None\n",
|
| 106 |
+
" return grad_input, None, None, None, grad_bias\n",
|
| 107 |
+
" \n",
|
| 108 |
+
" \n",
|
| 109 |
+
"class FrozenBNBEmbedding(nn.Module):\n",
|
| 110 |
+
" def __init__(self, weight, absmax, code):\n",
|
| 111 |
+
" super().__init__()\n",
|
| 112 |
+
" self.num_embeddings, self.embedding_dim = weight.shape\n",
|
| 113 |
+
" self.register_buffer(\"weight\", weight.requires_grad_(False))\n",
|
| 114 |
+
" self.register_buffer(\"absmax\", absmax.requires_grad_(False))\n",
|
| 115 |
+
" self.register_buffer(\"code\", code.requires_grad_(False))\n",
|
| 116 |
+
" self.adapter = None\n",
|
| 117 |
+
" \n",
|
| 118 |
+
" def forward(self, input, **kwargs):\n",
|
| 119 |
+
" with torch.no_grad():\n",
|
| 120 |
+
" # note: both quantuized weights and input indices are *not* differentiable\n",
|
| 121 |
+
" weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)\n",
|
| 122 |
+
" output = F.embedding(input, weight_deq, **kwargs)\n",
|
| 123 |
+
" if self.adapter:\n",
|
| 124 |
+
" output += self.adapter(input)\n",
|
| 125 |
+
" return output \n",
|
| 126 |
+
" \n",
|
| 127 |
+
" @classmethod\n",
|
| 128 |
+
" def from_embedding(cls, embedding: nn.Embedding) -> \"FrozenBNBEmbedding\":\n",
|
| 129 |
+
" weights_int8, state = quantize_blockise_lowmemory(embedding.weight)\n",
|
| 130 |
+
" return cls(weights_int8, *state)\n",
|
| 131 |
+
" \n",
|
| 132 |
+
" def __repr__(self):\n",
|
| 133 |
+
" return f\"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})\"\n",
|
| 134 |
+
" \n",
|
| 135 |
+
" \n",
|
| 136 |
+
"def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):\n",
|
| 137 |
+
" assert chunk_size % 4096 == 0\n",
|
| 138 |
+
" code = None\n",
|
| 139 |
+
" chunks = []\n",
|
| 140 |
+
" absmaxes = []\n",
|
| 141 |
+
" flat_tensor = matrix.view(-1)\n",
|
| 142 |
+
" for i in range((matrix.numel() - 1) // chunk_size + 1):\n",
|
| 143 |
+
" input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()\n",
|
| 144 |
+
" quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)\n",
|
| 145 |
+
" chunks.append(quantized_chunk)\n",
|
| 146 |
+
" absmaxes.append(absmax_chunk)\n",
|
| 147 |
+
" \n",
|
| 148 |
+
" matrix_i8 = torch.cat(chunks).reshape_as(matrix)\n",
|
| 149 |
+
" absmax = torch.cat(absmaxes)\n",
|
| 150 |
+
" return matrix_i8, (absmax, code)\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"\n",
|
| 153 |
+
"def convert_to_int8(model):\n",
|
| 154 |
+
" \"\"\"Convert linear and embedding modules to 8-bit with optional adapters\"\"\"\n",
|
| 155 |
+
" for module in list(model.modules()):\n",
|
| 156 |
+
" for name, child in module.named_children():\n",
|
| 157 |
+
" if isinstance(child, nn.Linear):\n",
|
| 158 |
+
" print(name, child)\n",
|
| 159 |
+
" setattr( \n",
|
| 160 |
+
" module,\n",
|
| 161 |
+
" name,\n",
|
| 162 |
+
" FrozenBNBLinear(\n",
|
| 163 |
+
" weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),\n",
|
| 164 |
+
" absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),\n",
|
| 165 |
+
" code=torch.zeros(256),\n",
|
| 166 |
+
" bias=child.bias,\n",
|
| 167 |
+
" ),\n",
|
| 168 |
+
" )\n",
|
| 169 |
+
" elif isinstance(child, nn.Embedding):\n",
|
| 170 |
+
" setattr(\n",
|
| 171 |
+
" module,\n",
|
| 172 |
+
" name,\n",
|
| 173 |
+
" FrozenBNBEmbedding(\n",
|
| 174 |
+
" weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),\n",
|
| 175 |
+
" absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),\n",
|
| 176 |
+
" code=torch.zeros(256),\n",
|
| 177 |
+
" )\n",
|
| 178 |
+
" )"
|
| 179 |
+
]
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"cell_type": "code",
|
| 183 |
+
"execution_count": null,
|
| 184 |
+
"id": "f4673d4c-0f4e-482e-ac04-b7389397af6e",
|
| 185 |
+
"metadata": {},
|
| 186 |
+
"outputs": [],
|
| 187 |
+
"source": [
|
| 188 |
+
"class BloomBlock(transformers.models.bloom.modeling_bloom.BloomBlock):\n",
|
| 189 |
+
" def __init__(self, config, layer_number=None):\n",
|
| 190 |
+
" super().__init__(config, layer_number)\n",
|
| 191 |
+
"\n",
|
| 192 |
+
" convert_to_int8(self.self_attention)\n",
|
| 193 |
+
" convert_to_int8(self.mlp)\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"\n",
|
| 196 |
+
"class BloomModel(transformers.models.bloom.modeling_bloom.BloomModel):\n",
|
| 197 |
+
" def __init__(self, config):\n",
|
| 198 |
+
" super().__init__(config)\n",
|
| 199 |
+
" convert_to_int8(self)\n",
|
| 200 |
+
" \n",
|
| 201 |
+
"\n",
|
| 202 |
+
"class BloomForCausalLM(transformers.models.bloom.modeling_bloom.BloomForCausalLM):\n",
|
| 203 |
+
" def __init__(self, config):\n",
|
| 204 |
+
" super().__init__(config)\n",
|
| 205 |
+
" convert_to_int8(self)\n",
|
| 206 |
+
" \n",
|
| 207 |
+
"transformers.models.bloom.modeling_bloom.BloomBlock = BloomBlock"
|
| 208 |
+
]
|
| 209 |
+
},
|
| 210 |
+
{
|
| 211 |
+
"cell_type": "code",
|
| 212 |
+
"execution_count": null,
|
| 213 |
+
"id": "eca11b11-9b0b-4958-89f4-401f7a2cac0e",
|
| 214 |
+
"metadata": {},
|
| 215 |
+
"outputs": [],
|
| 216 |
+
"source": [
|
| 217 |
+
"from transformers import BloomForCausalLM \n",
|
| 218 |
+
"tokenizer = transformers.AutoTokenizer.from_pretrained('joaoalvarenga/bloom-8bit')\n",
|
| 219 |
+
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
|
| 220 |
+
"model = BloomForCausalLM.from_pretrained('joaoalvarenga/bloom-8bit', low_cpu_mem_usage=True)\n",
|
| 221 |
+
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
|
| 222 |
+
"model.to(device)"
|
| 223 |
+
]
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"cell_type": "markdown",
|
| 227 |
+
"id": "82ea942b-7fcf-4bbc-adb9-be0bbd98b9f8",
|
| 228 |
+
"metadata": {},
|
| 229 |
+
"source": [
|
| 230 |
+
"### Fine-tune and save model"
|
| 231 |
+
]
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"cell_type": "code",
|
| 235 |
+
"execution_count": null,
|
| 236 |
+
"id": "26cacf36-56f7-4f9c-b975-33dd34b1ff9c",
|
| 237 |
+
"metadata": {},
|
| 238 |
+
"outputs": [],
|
| 239 |
+
"source": [
|
| 240 |
+
"def add_adapters(model, adapter_dim=16):\n",
|
| 241 |
+
" assert adapter_dim > 0\n",
|
| 242 |
+
"\n",
|
| 243 |
+
" for module in model.modules():\n",
|
| 244 |
+
" if isinstance(module, FrozenBNBLinear):\n",
|
| 245 |
+
" module.adapter = nn.Sequential(\n",
|
| 246 |
+
" nn.Linear(module.in_features, adapter_dim, bias=False),\n",
|
| 247 |
+
" nn.Linear(adapter_dim, module.out_features, bias=False),\n",
|
| 248 |
+
" )\n",
|
| 249 |
+
" nn.init.zeros_(module.adapter[1].weight)\n",
|
| 250 |
+
" elif isinstance(module, FrozenBNBEmbedding):\n",
|
| 251 |
+
" module.adapter = nn.Sequential(\n",
|
| 252 |
+
" nn.Embedding(module.num_embeddings, adapter_dim),\n",
|
| 253 |
+
" nn.Linear(adapter_dim, module.embedding_dim, bias=False),\n",
|
| 254 |
+
" )\n",
|
| 255 |
+
" nn.init.zeros_(module.adapter[1].weight)\n",
|
| 256 |
+
"\n",
|
| 257 |
+
"add_adapters(model)\n",
|
| 258 |
+
"model.to(device)"
|
| 259 |
+
]
|
| 260 |
+
},
|
| 261 |
+
{
|
| 262 |
+
"cell_type": "code",
|
| 263 |
+
"execution_count": null,
|
| 264 |
+
"id": "4e293eb3-979a-46d7-97b8-cde296f45da8",
|
| 265 |
+
"metadata": {},
|
| 266 |
+
"outputs": [],
|
| 267 |
+
"source": [
|
| 268 |
+
"from datasets import load_dataset\n",
|
| 269 |
+
"from bitsandbytes.optim import Adam8bit\n",
|
| 270 |
+
"\n",
|
| 271 |
+
"model.gradient_checkpointing_enable()\n",
|
| 272 |
+
"\n",
|
| 273 |
+
"wikisql = load_dataset(\"wikisql\", streaming=True)\n",
|
| 274 |
+
"optimizer = Adam8bit(model.parameters(), lr=1e-5)\n",
|
| 275 |
+
"\n",
|
| 276 |
+
"with torch.cuda.amp.autocast():\n",
|
| 277 |
+
" for row in tqdm(wikisql['train']):\n",
|
| 278 |
+
"\n",
|
| 279 |
+
" batch = tokenizer(row['question'] + row['sql']['human_readable'], truncation=True, max_length=128, return_tensors='pt')\n",
|
| 280 |
+
" batch = {k: v.cuda() for k, v in batch.items()}\n",
|
| 281 |
+
"\n",
|
| 282 |
+
" out = gpt.forward(**batch,)\n",
|
| 283 |
+
"\n",
|
| 284 |
+
" loss = F.cross_entropy(out.logits[:, :-1, :].flatten(0, -2), batch['input_ids'][:, 1:].flatten(),\n",
|
| 285 |
+
" reduction='mean')\n",
|
| 286 |
+
" print(loss)\n",
|
| 287 |
+
" loss.backward()\n",
|
| 288 |
+
"\n",
|
| 289 |
+
" optimizer.step()\n",
|
| 290 |
+
" optimizer.zero_grad()"
|
| 291 |
+
]
|
| 292 |
+
},
|
| 293 |
+
{
|
| 294 |
+
"cell_type": "code",
|
| 295 |
+
"execution_count": null,
|
| 296 |
+
"id": "4e2251f6-1a5c-4193-b971-0840d6d59c32",
|
| 297 |
+
"metadata": {},
|
| 298 |
+
"outputs": [],
|
| 299 |
+
"source": [
|
| 300 |
+
"model.save_pretrained('bloom-8bit-fine-tuned')"
|
| 301 |
+
]
|
| 302 |
+
}
|
| 303 |
+
],
|
| 304 |
+
"metadata": {
|
| 305 |
+
"kernelspec": {
|
| 306 |
+
"display_name": "Python 3 (ipykernel)",
|
| 307 |
+
"language": "python",
|
| 308 |
+
"name": "python3"
|
| 309 |
+
},
|
| 310 |
+
"language_info": {
|
| 311 |
+
"codemirror_mode": {
|
| 312 |
+
"name": "ipython",
|
| 313 |
+
"version": 3
|
| 314 |
+
},
|
| 315 |
+
"file_extension": ".py",
|
| 316 |
+
"mimetype": "text/x-python",
|
| 317 |
+
"name": "python",
|
| 318 |
+
"nbconvert_exporter": "python",
|
| 319 |
+
"pygments_lexer": "ipython3",
|
| 320 |
+
"version": "3.9.12"
|
| 321 |
+
}
|
| 322 |
+
},
|
| 323 |
+
"nbformat": 4,
|
| 324 |
+
"nbformat_minor": 5
|
| 325 |
+
}
|