File size: 2,548 Bytes
0180b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df7bd9f
 
 
 
 
0180b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df7bd9f
0180b35
 
 
 
 
 
 
 
df7bd9f
 
 
 
 
 
 
 
 
 
0180b35
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: transformers
base_model: cardiffnlp/twitter-xlm-roberta-base-hate-spanish
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: MultiPRIDE-DualEncoder-MainStage-es
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MultiPRIDE-DualEncoder-MainStage-es

This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-hate-spanish](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-hate-spanish) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5697
- Accuracy: 0.8030
- F1: 0.48
- Precision: 0.4
- Recall: 0.6

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.6627        | 1.0   | 77   | 0.6301          | 0.7879   | 0.3    | 0.3       | 0.3    |
| 0.5988        | 2.0   | 154  | 0.6037          | 0.7424   | 0.2609 | 0.2308    | 0.3    |
| 0.5895        | 3.0   | 231  | 0.5760          | 0.7879   | 0.3333 | 0.3182    | 0.35   |
| 0.5471        | 4.0   | 308  | 0.5450          | 0.7879   | 0.4615 | 0.375     | 0.6    |
| 0.4608        | 5.0   | 385  | 0.5414          | 0.7727   | 0.4444 | 0.3529    | 0.6    |
| 0.4488        | 6.0   | 462  | 0.5611          | 0.8030   | 0.48   | 0.4       | 0.6    |
| 0.4577        | 7.0   | 539  | 0.5658          | 0.8106   | 0.4898 | 0.4138    | 0.6    |
| 0.4569        | 8.0   | 616  | 0.5713          | 0.8182   | 0.5    | 0.4286    | 0.6    |
| 0.4127        | 9.0   | 693  | 0.5705          | 0.8030   | 0.48   | 0.4       | 0.6    |
| 0.4133        | 10.0  | 770  | 0.5697          | 0.8030   | 0.48   | 0.4       | 0.6    |


### Framework versions

- Transformers 4.57.3
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1