Upload generate_datasets.ipynb
Browse files- generate_datasets.ipynb +781 -0
generate_datasets.ipynb
ADDED
|
@@ -0,0 +1,781 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "d865b0fe-d47f-424c-9f19-51647414f06f",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"### Notebook for generating datasets \n",
|
| 9 |
+
"\n",
|
| 10 |
+
"Create datasets using apebench (jax) to be used by torch models for trainings.\n",
|
| 11 |
+
"Agree on a fixed naming convention."
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": 1,
|
| 17 |
+
"id": "472f2bd0-64b3-44f8-b930-03e64a776144",
|
| 18 |
+
"metadata": {},
|
| 19 |
+
"outputs": [
|
| 20 |
+
{
|
| 21 |
+
"name": "stderr",
|
| 22 |
+
"output_type": "stream",
|
| 23 |
+
"text": [
|
| 24 |
+
"/home/moeed/miniconda3/envs/apebench/lib/python3.12/site-packages/trainax/_general_trainer.py:7: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 25 |
+
" from tqdm.autonotebook import tqdm\n"
|
| 26 |
+
]
|
| 27 |
+
}
|
| 28 |
+
],
|
| 29 |
+
"source": [
|
| 30 |
+
"import apebench\n",
|
| 31 |
+
"import numpy as np\n",
|
| 32 |
+
"import jax.numpy as jnp\n",
|
| 33 |
+
"import seaborn as sns\n",
|
| 34 |
+
"from scipy import stats\n",
|
| 35 |
+
"import matplotlib.pyplot as plt"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": 12,
|
| 41 |
+
"id": "2197b3c3-093d-46cc-92f1-fd0d5b144b68",
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [],
|
| 44 |
+
"source": [
|
| 45 |
+
"# data generation configs\n",
|
| 46 |
+
"spatial_grid_points = 128\n",
|
| 47 |
+
"spatial_dims = 2\n",
|
| 48 |
+
"num_train_samples = 100\n",
|
| 49 |
+
"train_time_steps = 50\n",
|
| 50 |
+
"num_test_samples = 40\n",
|
| 51 |
+
"test_time_steps = 200\n"
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "markdown",
|
| 56 |
+
"id": "e95ac47f-49ef-4c9e-aaf4-26744007d4ba",
|
| 57 |
+
"metadata": {},
|
| 58 |
+
"source": [
|
| 59 |
+
"Data from advection scenario"
|
| 60 |
+
]
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"cell_type": "markdown",
|
| 64 |
+
"id": "1aaa1495-dc7e-4a32-b046-65f8ec1d62dc",
|
| 65 |
+
"metadata": {},
|
| 66 |
+
"source": [
|
| 67 |
+
"Advection hard for 2D"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "code",
|
| 72 |
+
"execution_count": 13,
|
| 73 |
+
"id": "d7aef0d2-f151-4ef1-a591-829acfb6d246",
|
| 74 |
+
"metadata": {},
|
| 75 |
+
"outputs": [],
|
| 76 |
+
"source": [
|
| 77 |
+
"# more difficult advection equation\n",
|
| 78 |
+
"advection2D_hard_scenario = apebench.scenarios.difficulty.Advection(\n",
|
| 79 |
+
" \n",
|
| 80 |
+
" optim_config=\"adam;10_000;constant;1e-4\",\n",
|
| 81 |
+
"\n",
|
| 82 |
+
" report_metrics=\"mean_nRMSE\", # \"mean_nRMSE,mean_fourier_nRMSE;0;5;0,mean_H1_nRMSE\"\n",
|
| 83 |
+
" \n",
|
| 84 |
+
" num_points = spatial_grid_points, # discretized points on the spatial \n",
|
| 85 |
+
"\n",
|
| 86 |
+
" num_spatial_dims = spatial_dims, # spatial dimensions \n",
|
| 87 |
+
" \n",
|
| 88 |
+
" num_train_samples = num_train_samples, # number of ICs for train set\n",
|
| 89 |
+
" \n",
|
| 90 |
+
" train_temporal_horizon = train_time_steps, # consecutive time steps the simulator is run\n",
|
| 91 |
+
"\n",
|
| 92 |
+
" train_seed = 0,\n",
|
| 93 |
+
"\n",
|
| 94 |
+
" num_test_samples = num_test_samples, # number of ICs for test set\n",
|
| 95 |
+
" \n",
|
| 96 |
+
" test_temporal_horizon = test_time_steps, # consecutive time steps the simulator is run for test set\n",
|
| 97 |
+
"\n",
|
| 98 |
+
" test_seed = 773,\n",
|
| 99 |
+
" \n",
|
| 100 |
+
" advection_gamma=-10.5,\n",
|
| 101 |
+
")"
|
| 102 |
+
]
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"cell_type": "code",
|
| 106 |
+
"execution_count": 14,
|
| 107 |
+
"id": "92855a20-0981-4d91-be73-86b95b83cdf5",
|
| 108 |
+
"metadata": {},
|
| 109 |
+
"outputs": [
|
| 110 |
+
{
|
| 111 |
+
"name": "stdout",
|
| 112 |
+
"output_type": "stream",
|
| 113 |
+
"text": [
|
| 114 |
+
"train data shape (100, 51, 1, 128, 128)\n",
|
| 115 |
+
"test ICs shape (40, 1, 128, 128)\n",
|
| 116 |
+
"complete test data shape (40, 201, 1, 128, 128)\n",
|
| 117 |
+
"val data (10, 51, 1, 128, 128)\n",
|
| 118 |
+
"test data after removing val (30, 201, 1, 128, 128)\n"
|
| 119 |
+
]
|
| 120 |
+
}
|
| 121 |
+
],
|
| 122 |
+
"source": [
|
| 123 |
+
"train_data = advection2D_hard_scenario.get_train_data()\n",
|
| 124 |
+
"print('train data shape',train_data.shape)\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"test_ic_set = advection2D_hard_scenario.get_test_ic_set()\n",
|
| 127 |
+
"print('test ICs shape',test_ic_set.shape)\n",
|
| 128 |
+
"\n",
|
| 129 |
+
"full_test_data = advection2D_hard_scenario.get_test_data() \n",
|
| 130 |
+
"print('complete test data shape',full_test_data.shape)\n",
|
| 131 |
+
"\n",
|
| 132 |
+
"val_data = full_test_data[:10,:51,:,:]\n",
|
| 133 |
+
"print('val data',val_data.shape)\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"test_data = full_test_data[10:,:,:,:]\n",
|
| 136 |
+
"print('test data after removing val',test_data.shape)"
|
| 137 |
+
]
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"cell_type": "code",
|
| 141 |
+
"execution_count": 15,
|
| 142 |
+
"id": "b5bf0add-1b5d-48fe-8463-5477d7fda33a",
|
| 143 |
+
"metadata": {},
|
| 144 |
+
"outputs": [],
|
| 145 |
+
"source": [
|
| 146 |
+
"# jnp.save(\"advection2D_hard_train_data_128x128_100ic_50t.npy\", train_data)\n",
|
| 147 |
+
"# jnp.save(\"advection2D_hard_val_data_128x128_10ic_50t.npy\", val_data)\n",
|
| 148 |
+
"# jnp.save(\"advection2D_hard_test_data_128x128_30ic_200t.npy\", test_data)\n"
|
| 149 |
+
]
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"cell_type": "markdown",
|
| 153 |
+
"id": "3562aa84-7db2-4e94-bfb6-0bd99b83db67",
|
| 154 |
+
"metadata": {},
|
| 155 |
+
"source": [
|
| 156 |
+
"Data from kuramoto sivashinksy scenario"
|
| 157 |
+
]
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"cell_type": "code",
|
| 161 |
+
"execution_count": 16,
|
| 162 |
+
"id": "86b4595a-1371-4f6f-8faa-7bfe2d649276",
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": [
|
| 166 |
+
"kuramoto2D_scenario = apebench.scenarios.difficulty.KuramotoSivashinsky(\n",
|
| 167 |
+
" \n",
|
| 168 |
+
" optim_config=\"adam;10_000;constant;1e-4\",\n",
|
| 169 |
+
" \n",
|
| 170 |
+
" report_metrics=\"mean_nRMSE\", # \"mean_nRMSE,mean_fourier_nRMSE;0;5;0,mean_H1_nRMSE\"\n",
|
| 171 |
+
" \n",
|
| 172 |
+
" num_points = spatial_grid_points, # discretized points on the spatial \n",
|
| 173 |
+
"\n",
|
| 174 |
+
" num_spatial_dims = spatial_dims, # spatial dimensions \n",
|
| 175 |
+
" \n",
|
| 176 |
+
" num_train_samples = num_train_samples, # number of ICs for train set\n",
|
| 177 |
+
" \n",
|
| 178 |
+
" train_temporal_horizon = train_time_steps, # consecutive time steps the simulator is run\n",
|
| 179 |
+
"\n",
|
| 180 |
+
" train_seed = 0,\n",
|
| 181 |
+
"\n",
|
| 182 |
+
" num_test_samples = num_test_samples, # number of ICs for test set\n",
|
| 183 |
+
" \n",
|
| 184 |
+
" test_temporal_horizon = test_time_steps, # consecutive time steps the simulator is run for test set\n",
|
| 185 |
+
"\n",
|
| 186 |
+
" test_seed = 773,\n",
|
| 187 |
+
")"
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"cell_type": "code",
|
| 192 |
+
"execution_count": 17,
|
| 193 |
+
"id": "dccb6e26-4835-4d76-ab38-c06995cf7e51",
|
| 194 |
+
"metadata": {},
|
| 195 |
+
"outputs": [
|
| 196 |
+
{
|
| 197 |
+
"name": "stdout",
|
| 198 |
+
"output_type": "stream",
|
| 199 |
+
"text": [
|
| 200 |
+
"train data shape (100, 51, 1, 128, 128)\n",
|
| 201 |
+
"test ICs shape (40, 1, 128, 128)\n",
|
| 202 |
+
"complete test data shape (40, 201, 1, 128, 128)\n",
|
| 203 |
+
"val data (10, 51, 1, 128, 128)\n",
|
| 204 |
+
"test data after removing val (30, 201, 1, 128, 128)\n"
|
| 205 |
+
]
|
| 206 |
+
}
|
| 207 |
+
],
|
| 208 |
+
"source": [
|
| 209 |
+
"# data from kuramoto scenario \n",
|
| 210 |
+
"train_data = kuramoto2D_scenario.get_train_data()\n",
|
| 211 |
+
"print('train data shape',train_data.shape)\n",
|
| 212 |
+
"\n",
|
| 213 |
+
"test_ic_set = kuramoto2D_scenario.get_test_ic_set()\n",
|
| 214 |
+
"print('test ICs shape',test_ic_set.shape)\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"full_test_data = kuramoto2D_scenario.get_test_data() \n",
|
| 217 |
+
"print('complete test data shape',full_test_data.shape)\n",
|
| 218 |
+
"\n",
|
| 219 |
+
"val_data = full_test_data[:10,:51,:,:]\n",
|
| 220 |
+
"print('val data',val_data.shape)\n",
|
| 221 |
+
"\n",
|
| 222 |
+
"test_data = full_test_data[10:,:,:,:]\n",
|
| 223 |
+
"print('test data after removing val',test_data.shape)\n"
|
| 224 |
+
]
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"cell_type": "code",
|
| 228 |
+
"execution_count": 19,
|
| 229 |
+
"id": "0233bd94-e51d-4b89-89ad-0f83ccaec2ef",
|
| 230 |
+
"metadata": {},
|
| 231 |
+
"outputs": [],
|
| 232 |
+
"source": [
|
| 233 |
+
"# jnp.save(\"kuramoto2D_train_data_128x128_100ic_50t.npy\", train_data)\n",
|
| 234 |
+
"# jnp.save(\"kuramoto2D_val_data_128x128_10ic_50t.npy\", val_data)\n",
|
| 235 |
+
"# jnp.save(\"kuramoto2D_test_data_128x128_30ic_200t.npy\", test_data)\n"
|
| 236 |
+
]
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"cell_type": "markdown",
|
| 240 |
+
"id": "1e51cde4-241b-4c79-8c11-791e375687b4",
|
| 241 |
+
"metadata": {},
|
| 242 |
+
"source": [
|
| 243 |
+
"Data from advection diffusion scenario"
|
| 244 |
+
]
|
| 245 |
+
},
|
| 246 |
+
{
|
| 247 |
+
"cell_type": "code",
|
| 248 |
+
"execution_count": 20,
|
| 249 |
+
"id": "bb39fe39-e208-4fa8-8688-53035c9aecfa",
|
| 250 |
+
"metadata": {},
|
| 251 |
+
"outputs": [],
|
| 252 |
+
"source": [
|
| 253 |
+
"advdiff2D_scenario = apebench.scenarios.difficulty.AdvectionDiffusion(\n",
|
| 254 |
+
" \n",
|
| 255 |
+
" optim_config=\"adam;10_000;constant;1e-4\",\n",
|
| 256 |
+
"\n",
|
| 257 |
+
" \n",
|
| 258 |
+
" report_metrics=\"mean_nRMSE\", # \"mean_nRMSE,mean_fourier_nRMSE;0;5;0,mean_H1_nRMSE\"\n",
|
| 259 |
+
" \n",
|
| 260 |
+
" num_points = spatial_grid_points, # discretized points on the spatial \n",
|
| 261 |
+
"\n",
|
| 262 |
+
" num_spatial_dims = spatial_dims, # spatial dimensions \n",
|
| 263 |
+
" \n",
|
| 264 |
+
" num_train_samples = num_train_samples, # number of ICs for train set\n",
|
| 265 |
+
" \n",
|
| 266 |
+
" train_temporal_horizon = train_time_steps, # consecutive time steps the simulator is run\n",
|
| 267 |
+
"\n",
|
| 268 |
+
" train_seed = 0,\n",
|
| 269 |
+
"\n",
|
| 270 |
+
" num_test_samples = num_test_samples, # number of ICs for test set\n",
|
| 271 |
+
" \n",
|
| 272 |
+
" test_temporal_horizon = test_time_steps, # consecutive time steps the simulator is run for test set\n",
|
| 273 |
+
"\n",
|
| 274 |
+
" test_seed = 773,\n",
|
| 275 |
+
")"
|
| 276 |
+
]
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"cell_type": "code",
|
| 280 |
+
"execution_count": 22,
|
| 281 |
+
"id": "ac69e48e-7bba-45a7-89f8-1add76e87a8f",
|
| 282 |
+
"metadata": {},
|
| 283 |
+
"outputs": [
|
| 284 |
+
{
|
| 285 |
+
"name": "stdout",
|
| 286 |
+
"output_type": "stream",
|
| 287 |
+
"text": [
|
| 288 |
+
"train data shape (100, 51, 1, 128, 128)\n",
|
| 289 |
+
"test ICs shape (40, 1, 128, 128)\n",
|
| 290 |
+
"complete test data shape (40, 201, 1, 128, 128)\n",
|
| 291 |
+
"val data (10, 51, 1, 128, 128)\n",
|
| 292 |
+
"test data after removing val (30, 201, 1, 128, 128)\n"
|
| 293 |
+
]
|
| 294 |
+
}
|
| 295 |
+
],
|
| 296 |
+
"source": [
|
| 297 |
+
"# data from advection diffusion\n",
|
| 298 |
+
"train_data = advdiff2D_scenario.get_train_data()\n",
|
| 299 |
+
"print('train data shape',train_data.shape)\n",
|
| 300 |
+
"\n",
|
| 301 |
+
"test_ic_set = advdiff2D_scenario.get_test_ic_set()\n",
|
| 302 |
+
"print('test ICs shape',test_ic_set.shape)\n",
|
| 303 |
+
"\n",
|
| 304 |
+
"full_test_data = advdiff2D_scenario.get_test_data() \n",
|
| 305 |
+
"print('complete test data shape',full_test_data.shape)\n",
|
| 306 |
+
"\n",
|
| 307 |
+
"val_data = full_test_data[:10,:51,:,:]\n",
|
| 308 |
+
"print('val data',val_data.shape)\n",
|
| 309 |
+
"\n",
|
| 310 |
+
"test_data = full_test_data[10:,:,:,:]\n",
|
| 311 |
+
"print('test data after removing val',test_data.shape)\n",
|
| 312 |
+
"\n"
|
| 313 |
+
]
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"cell_type": "code",
|
| 317 |
+
"execution_count": 25,
|
| 318 |
+
"id": "98b2ad28-243f-4a87-ac30-7d7fc0873fd9",
|
| 319 |
+
"metadata": {},
|
| 320 |
+
"outputs": [],
|
| 321 |
+
"source": [
|
| 322 |
+
"# jnp.save(\"advdiff2D_train_data_128x128_100ic_50t.npy\", train_data)\n",
|
| 323 |
+
"# jnp.save(\"advdiff2D_val_data_128x128_10ic_50t.npy\", val_data)\n",
|
| 324 |
+
"# jnp.save(\"advdiff2D_test_data_128x128_30ic_200t.npy\", test_data)\n"
|
| 325 |
+
]
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"cell_type": "code",
|
| 329 |
+
"execution_count": 24,
|
| 330 |
+
"id": "55fb63eb-9155-4817-b0d2-cb2dd0b33878",
|
| 331 |
+
"metadata": {},
|
| 332 |
+
"outputs": [],
|
| 333 |
+
"source": [
|
| 334 |
+
"burgers2D_scenario = apebench.scenarios.difficulty.Burgers(\n",
|
| 335 |
+
" \n",
|
| 336 |
+
" optim_config=\"adam;10_000;constant;1e-4\",\n",
|
| 337 |
+
"\n",
|
| 338 |
+
" report_metrics=\"mean_nRMSE\", # \"mean_nRMSE,mean_fourier_nRMSE;0;5;0,mean_H1_nRMSE\"\n",
|
| 339 |
+
" \n",
|
| 340 |
+
" num_points = spatial_grid_points, # discretized points on the spatial \n",
|
| 341 |
+
"\n",
|
| 342 |
+
" num_spatial_dims = spatial_dims, # spatial dimensions \n",
|
| 343 |
+
" \n",
|
| 344 |
+
" num_train_samples = num_train_samples, # number of ICs for train set\n",
|
| 345 |
+
" \n",
|
| 346 |
+
" train_temporal_horizon = train_time_steps, # consecutive time steps the simulator is run\n",
|
| 347 |
+
"\n",
|
| 348 |
+
" train_seed = 0,\n",
|
| 349 |
+
"\n",
|
| 350 |
+
" num_test_samples = num_test_samples, # number of ICs for test set\n",
|
| 351 |
+
" \n",
|
| 352 |
+
" test_temporal_horizon = test_time_steps, # consecutive time steps the simulator is run for test set\n",
|
| 353 |
+
"\n",
|
| 354 |
+
" test_seed = 773,\n",
|
| 355 |
+
" \n",
|
| 356 |
+
")"
|
| 357 |
+
]
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"cell_type": "code",
|
| 361 |
+
"execution_count": 26,
|
| 362 |
+
"id": "f8654e86-250f-462b-8f8c-099e95855043",
|
| 363 |
+
"metadata": {},
|
| 364 |
+
"outputs": [
|
| 365 |
+
{
|
| 366 |
+
"name": "stdout",
|
| 367 |
+
"output_type": "stream",
|
| 368 |
+
"text": [
|
| 369 |
+
"train data shape (100, 51, 2, 128, 128)\n",
|
| 370 |
+
"test ICs shape (40, 2, 128, 128)\n",
|
| 371 |
+
"complete test data shape (40, 201, 2, 128, 128)\n",
|
| 372 |
+
"val data (10, 51, 2, 128, 128)\n",
|
| 373 |
+
"test data after removing val (30, 201, 2, 128, 128)\n"
|
| 374 |
+
]
|
| 375 |
+
}
|
| 376 |
+
],
|
| 377 |
+
"source": [
|
| 378 |
+
"# data from burgers\n",
|
| 379 |
+
"train_data = burgers2D_scenario.get_train_data()\n",
|
| 380 |
+
"print('train data shape',train_data.shape)\n",
|
| 381 |
+
"\n",
|
| 382 |
+
"test_ic_set = burgers2D_scenario.get_test_ic_set()\n",
|
| 383 |
+
"print('test ICs shape',test_ic_set.shape)\n",
|
| 384 |
+
"\n",
|
| 385 |
+
"full_test_data = burgers2D_scenario.get_test_data() \n",
|
| 386 |
+
"print('complete test data shape',full_test_data.shape)\n",
|
| 387 |
+
"\n",
|
| 388 |
+
"val_data = full_test_data[:10,:51,:,:]\n",
|
| 389 |
+
"print('val data',val_data.shape)\n",
|
| 390 |
+
"\n",
|
| 391 |
+
"test_data = full_test_data[10:,:,:,:]\n",
|
| 392 |
+
"print('test data after removing val',test_data.shape)\n",
|
| 393 |
+
"\n"
|
| 394 |
+
]
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"cell_type": "code",
|
| 398 |
+
"execution_count": 27,
|
| 399 |
+
"id": "19bc4cf4-af8b-4ad9-bb73-76f98b20e43e",
|
| 400 |
+
"metadata": {},
|
| 401 |
+
"outputs": [],
|
| 402 |
+
"source": [
|
| 403 |
+
"# jnp.save(\"burgers2D_train_data_128x128_100ic_50t.npy\", train_data)\n",
|
| 404 |
+
"# jnp.save(\"burgers2D_val_data_128x128_10ic_50t.npy\", val_data)\n",
|
| 405 |
+
"# jnp.save(\"burgers2D_test_data_128x128_30ic_200t.npy\", test_data)\n"
|
| 406 |
+
]
|
| 407 |
+
},
|
| 408 |
+
{
|
| 409 |
+
"cell_type": "code",
|
| 410 |
+
"execution_count": null,
|
| 411 |
+
"id": "2e176902-3626-4634-9447-d65167de7688",
|
| 412 |
+
"metadata": {},
|
| 413 |
+
"outputs": [],
|
| 414 |
+
"source": []
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"cell_type": "code",
|
| 418 |
+
"execution_count": 29,
|
| 419 |
+
"id": "e2b7d30d-4e16-4b9f-b544-d7e3e050a096",
|
| 420 |
+
"metadata": {},
|
| 421 |
+
"outputs": [],
|
| 422 |
+
"source": [
|
| 423 |
+
"fisher2D_scenario = apebench.scenarios.difficulty.FisherKPP(\n",
|
| 424 |
+
" \n",
|
| 425 |
+
" optim_config=\"adam;10_000;constant;1e-4\",\n",
|
| 426 |
+
"\n",
|
| 427 |
+
" \n",
|
| 428 |
+
" report_metrics=\"mean_nRMSE\", # \"mean_nRMSE,mean_fourier_nRMSE;0;5;0,mean_H1_nRMSE\"\n",
|
| 429 |
+
" \n",
|
| 430 |
+
" num_points = spatial_grid_points, # discretized points on the spatial \n",
|
| 431 |
+
"\n",
|
| 432 |
+
" num_spatial_dims = spatial_dims, # spatial dimensions \n",
|
| 433 |
+
" \n",
|
| 434 |
+
" num_train_samples = num_train_samples, # number of ICs for train set\n",
|
| 435 |
+
" \n",
|
| 436 |
+
" train_temporal_horizon = train_time_steps, # consecutive time steps the simulator is run\n",
|
| 437 |
+
"\n",
|
| 438 |
+
" train_seed = 0,\n",
|
| 439 |
+
"\n",
|
| 440 |
+
" num_test_samples = num_test_samples, # number of ICs for test set\n",
|
| 441 |
+
" \n",
|
| 442 |
+
" test_temporal_horizon = test_time_steps, # consecutive time steps the simulator is run for test set\n",
|
| 443 |
+
"\n",
|
| 444 |
+
" test_seed = 773,\n",
|
| 445 |
+
")"
|
| 446 |
+
]
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
"cell_type": "code",
|
| 450 |
+
"execution_count": 30,
|
| 451 |
+
"id": "154d74a7-3fd1-45db-acee-f1508ee75f04",
|
| 452 |
+
"metadata": {},
|
| 453 |
+
"outputs": [
|
| 454 |
+
{
|
| 455 |
+
"name": "stdout",
|
| 456 |
+
"output_type": "stream",
|
| 457 |
+
"text": [
|
| 458 |
+
"train data shape (100, 51, 1, 128, 128)\n",
|
| 459 |
+
"test ICs shape (40, 1, 128, 128)\n",
|
| 460 |
+
"complete test data shape (40, 201, 1, 128, 128)\n",
|
| 461 |
+
"val data (10, 51, 1, 128, 128)\n",
|
| 462 |
+
"test data after removing val (30, 201, 1, 128, 128)\n"
|
| 463 |
+
]
|
| 464 |
+
}
|
| 465 |
+
],
|
| 466 |
+
"source": [
|
| 467 |
+
"# data from fisher-kpp\n",
|
| 468 |
+
"train_data = fisher2D_scenario.get_train_data()\n",
|
| 469 |
+
"print('train data shape',train_data.shape)\n",
|
| 470 |
+
"\n",
|
| 471 |
+
"test_ic_set = fisher2D_scenario.get_test_ic_set()\n",
|
| 472 |
+
"print('test ICs shape',test_ic_set.shape)\n",
|
| 473 |
+
"\n",
|
| 474 |
+
"full_test_data = fisher2D_scenario.get_test_data() \n",
|
| 475 |
+
"print('complete test data shape',full_test_data.shape)\n",
|
| 476 |
+
"\n",
|
| 477 |
+
"val_data = full_test_data[:10,:51,:,:]\n",
|
| 478 |
+
"print('val data',val_data.shape)\n",
|
| 479 |
+
"\n",
|
| 480 |
+
"test_data = full_test_data[10:,:,:,:]\n",
|
| 481 |
+
"print('test data after removing val',test_data.shape)\n",
|
| 482 |
+
"\n"
|
| 483 |
+
]
|
| 484 |
+
},
|
| 485 |
+
{
|
| 486 |
+
"cell_type": "code",
|
| 487 |
+
"execution_count": 31,
|
| 488 |
+
"id": "9cd14e27-23ed-4e05-b63a-aa38df53a945",
|
| 489 |
+
"metadata": {},
|
| 490 |
+
"outputs": [],
|
| 491 |
+
"source": [
|
| 492 |
+
"# jnp.save(\"fisher2D_train_data_128x128_100ic_50t.npy\", train_data)\n",
|
| 493 |
+
"# jnp.save(\"fisher2D_val_data_128x128_10ic_50t.npy\", val_data)\n",
|
| 494 |
+
"# jnp.save(\"fisher2D_test_data_128x128_30ic_200t.npy\", test_data)\n"
|
| 495 |
+
]
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"cell_type": "markdown",
|
| 499 |
+
"id": "18d43b36-1c1e-4ec6-8bd1-532f08e334ff",
|
| 500 |
+
"metadata": {},
|
| 501 |
+
"source": [
|
| 502 |
+
"2D Kolmogorov flow. Kolmogorov forcing of Navier stokes:"
|
| 503 |
+
]
|
| 504 |
+
},
|
| 505 |
+
{
|
| 506 |
+
"cell_type": "code",
|
| 507 |
+
"execution_count": null,
|
| 508 |
+
"id": "ac7c2025-c7d5-4141-837d-c34b6defcbf7",
|
| 509 |
+
"metadata": {},
|
| 510 |
+
"outputs": [],
|
| 511 |
+
"source": []
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"cell_type": "code",
|
| 515 |
+
"execution_count": 32,
|
| 516 |
+
"id": "abf9d28d-8903-41ca-829f-8632d35b9b20",
|
| 517 |
+
"metadata": {},
|
| 518 |
+
"outputs": [],
|
| 519 |
+
"source": [
|
| 520 |
+
"kolmflow2D_scenario = apebench.scenarios.physical.KolmogorovFlow(\n",
|
| 521 |
+
" \n",
|
| 522 |
+
" optim_config=\"adam;10_000;constant;1e-4\",\n",
|
| 523 |
+
"\n",
|
| 524 |
+
" report_metrics=\"mean_nRMSE\", # \"mean_nRMSE,mean_fourier_nRMSE;0;5;0,mean_H1_nRMSE\"\n",
|
| 525 |
+
" \n",
|
| 526 |
+
" num_points = spatial_grid_points, # discretized points on the spatial \n",
|
| 527 |
+
"\n",
|
| 528 |
+
" num_spatial_dims = spatial_dims, # spatial dimensions \n",
|
| 529 |
+
" \n",
|
| 530 |
+
" num_train_samples = num_train_samples, # number of ICs for train set\n",
|
| 531 |
+
" \n",
|
| 532 |
+
" train_temporal_horizon = train_time_steps, # consecutive time steps the simulator is run\n",
|
| 533 |
+
"\n",
|
| 534 |
+
" train_seed = 0,\n",
|
| 535 |
+
"\n",
|
| 536 |
+
" num_test_samples = num_test_samples, # number of ICs for test set\n",
|
| 537 |
+
" \n",
|
| 538 |
+
" test_temporal_horizon = test_time_steps, # consecutive time steps the simulator is run for test set\n",
|
| 539 |
+
"\n",
|
| 540 |
+
" test_seed = 773,\n",
|
| 541 |
+
")"
|
| 542 |
+
]
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"cell_type": "code",
|
| 546 |
+
"execution_count": 33,
|
| 547 |
+
"id": "8c1d6fa7-d085-49cf-8bc9-67f391d8f95f",
|
| 548 |
+
"metadata": {},
|
| 549 |
+
"outputs": [
|
| 550 |
+
{
|
| 551 |
+
"name": "stdout",
|
| 552 |
+
"output_type": "stream",
|
| 553 |
+
"text": [
|
| 554 |
+
"train data shape (100, 51, 1, 128, 128)\n",
|
| 555 |
+
"test ICs shape (40, 1, 128, 128)\n",
|
| 556 |
+
"complete test data shape (40, 201, 1, 128, 128)\n",
|
| 557 |
+
"val data (10, 51, 1, 128, 128)\n",
|
| 558 |
+
"test data after removing val (30, 201, 1, 128, 128)\n"
|
| 559 |
+
]
|
| 560 |
+
}
|
| 561 |
+
],
|
| 562 |
+
"source": [
|
| 563 |
+
"# data from NS-kolm flow\n",
|
| 564 |
+
"train_data = kolmflow2D_scenario.get_train_data()\n",
|
| 565 |
+
"print('train data shape',train_data.shape)\n",
|
| 566 |
+
"\n",
|
| 567 |
+
"test_ic_set = kolmflow2D_scenario.get_test_ic_set()\n",
|
| 568 |
+
"print('test ICs shape',test_ic_set.shape)\n",
|
| 569 |
+
"\n",
|
| 570 |
+
"full_test_data = kolmflow2D_scenario.get_test_data() \n",
|
| 571 |
+
"print('complete test data shape',full_test_data.shape)\n",
|
| 572 |
+
"\n",
|
| 573 |
+
"val_data = full_test_data[:10,:51,:,:]\n",
|
| 574 |
+
"print('val data',val_data.shape)\n",
|
| 575 |
+
"\n",
|
| 576 |
+
"test_data = full_test_data[10:,:,:,:]\n",
|
| 577 |
+
"print('test data after removing val',test_data.shape)"
|
| 578 |
+
]
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"cell_type": "code",
|
| 582 |
+
"execution_count": 34,
|
| 583 |
+
"id": "fe45d76b-9a8f-4998-aba9-2685f8ba1ad8",
|
| 584 |
+
"metadata": {},
|
| 585 |
+
"outputs": [],
|
| 586 |
+
"source": [
|
| 587 |
+
"# jnp.save(\"kolmflow2D_train_data_128x128_100ic_50t.npy\", train_data)\n",
|
| 588 |
+
"# jnp.save(\"kolmflow2D/kolmflow2D_val_data_128x128_10ic_50t.npy\", val_data)\n",
|
| 589 |
+
"# jnp.save(\"kolmflow2D/kolmflow2D_test_data_128x128_30ic_200t.npy\", test_data)\n"
|
| 590 |
+
]
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"cell_type": "code",
|
| 594 |
+
"execution_count": null,
|
| 595 |
+
"id": "e8111538-d4b8-464f-9c0e-e3758d89a5d6",
|
| 596 |
+
"metadata": {},
|
| 597 |
+
"outputs": [],
|
| 598 |
+
"source": []
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"cell_type": "code",
|
| 602 |
+
"execution_count": 35,
|
| 603 |
+
"id": "51fbdc8d-4a44-465b-85e1-19e15d965350",
|
| 604 |
+
"metadata": {},
|
| 605 |
+
"outputs": [],
|
| 606 |
+
"source": [
|
| 607 |
+
"grayscott2D_scenario = apebench.scenarios.physical.GrayScott(\n",
|
| 608 |
+
" \n",
|
| 609 |
+
" optim_config=\"adam;10_000;constant;1e-4\",\n",
|
| 610 |
+
"\n",
|
| 611 |
+
" report_metrics=\"mean_nRMSE\", # \"mean_nRMSE,mean_fourier_nRMSE;0;5;0,mean_H1_nRMSE\"\n",
|
| 612 |
+
" \n",
|
| 613 |
+
" num_points = spatial_grid_points, # discretized points on the spatial \n",
|
| 614 |
+
"\n",
|
| 615 |
+
" num_spatial_dims = spatial_dims, # spatial dimensions \n",
|
| 616 |
+
" \n",
|
| 617 |
+
" num_train_samples = num_train_samples, # number of ICs for train set\n",
|
| 618 |
+
" \n",
|
| 619 |
+
" train_temporal_horizon = train_time_steps, # consecutive time steps the simulator is run\n",
|
| 620 |
+
"\n",
|
| 621 |
+
" train_seed = 0,\n",
|
| 622 |
+
"\n",
|
| 623 |
+
" num_test_samples = num_test_samples, # number of ICs for test set\n",
|
| 624 |
+
" \n",
|
| 625 |
+
" test_temporal_horizon = test_time_steps, # consecutive time steps the simulator is run for test set\n",
|
| 626 |
+
"\n",
|
| 627 |
+
" test_seed = 773,\n",
|
| 628 |
+
")"
|
| 629 |
+
]
|
| 630 |
+
},
|
| 631 |
+
{
|
| 632 |
+
"cell_type": "code",
|
| 633 |
+
"execution_count": 36,
|
| 634 |
+
"id": "d1482cd8-1651-4bd0-9ed3-52729d424f6f",
|
| 635 |
+
"metadata": {},
|
| 636 |
+
"outputs": [
|
| 637 |
+
{
|
| 638 |
+
"name": "stdout",
|
| 639 |
+
"output_type": "stream",
|
| 640 |
+
"text": [
|
| 641 |
+
"train data shape (100, 51, 2, 128, 128)\n",
|
| 642 |
+
"test ICs shape (40, 2, 128, 128)\n",
|
| 643 |
+
"complete test data shape (40, 201, 2, 128, 128)\n",
|
| 644 |
+
"val data (10, 51, 2, 128, 128)\n",
|
| 645 |
+
"test data after removing val (30, 201, 2, 128, 128)\n"
|
| 646 |
+
]
|
| 647 |
+
}
|
| 648 |
+
],
|
| 649 |
+
"source": [
|
| 650 |
+
"# data from gray scott\n",
|
| 651 |
+
"train_data = grayscott2D_scenario.get_train_data()\n",
|
| 652 |
+
"print('train data shape',train_data.shape)\n",
|
| 653 |
+
"\n",
|
| 654 |
+
"test_ic_set = grayscott2D_scenario.get_test_ic_set()\n",
|
| 655 |
+
"print('test ICs shape',test_ic_set.shape)\n",
|
| 656 |
+
"\n",
|
| 657 |
+
"full_test_data = grayscott2D_scenario.get_test_data() # [:,1:,:,:] # removing the initial condition from test set\n",
|
| 658 |
+
"print('complete test data shape',full_test_data.shape)\n",
|
| 659 |
+
"\n",
|
| 660 |
+
"val_data = full_test_data[:10,:51,:,:]\n",
|
| 661 |
+
"print('val data',val_data.shape)\n",
|
| 662 |
+
"\n",
|
| 663 |
+
"test_data = full_test_data[10:,:,:,:]\n",
|
| 664 |
+
"print('test data after removing val',test_data.shape)\n",
|
| 665 |
+
"\n"
|
| 666 |
+
]
|
| 667 |
+
},
|
| 668 |
+
{
|
| 669 |
+
"cell_type": "code",
|
| 670 |
+
"execution_count": 38,
|
| 671 |
+
"id": "8e53499e-2242-4de9-8738-be9cf4b93ea1",
|
| 672 |
+
"metadata": {},
|
| 673 |
+
"outputs": [],
|
| 674 |
+
"source": [
|
| 675 |
+
"# jnp.save(\"grayscott2D_train_data_128x128_100ic_50t.npy\", train_data)\n",
|
| 676 |
+
"# jnp.save(\"grayscott2D_val_data_128x128_10ic_50t.npy\", val_data)\n",
|
| 677 |
+
"# jnp.save(\"grayscott2D_test_data_128x128_30ic_200t.npy\", test_data)\n"
|
| 678 |
+
]
|
| 679 |
+
},
|
| 680 |
+
{
|
| 681 |
+
"cell_type": "code",
|
| 682 |
+
"execution_count": 39,
|
| 683 |
+
"id": "39124165-aa63-433b-b81f-6ca560db10ed",
|
| 684 |
+
"metadata": {},
|
| 685 |
+
"outputs": [],
|
| 686 |
+
"source": [
|
| 687 |
+
"dypdiff2D_scenario = apebench.scenarios.difficulty.HyperDiffusion(\n",
|
| 688 |
+
" \n",
|
| 689 |
+
" optim_config=\"adam;10_000;constant;1e-4\",\n",
|
| 690 |
+
"\n",
|
| 691 |
+
" report_metrics=\"mean_nRMSE\", # \"mean_nRMSE,mean_fourier_nRMSE;0;5;0,mean_H1_nRMSE\"\n",
|
| 692 |
+
" \n",
|
| 693 |
+
" num_points = spatial_grid_points, # discretized points on the spatial \n",
|
| 694 |
+
"\n",
|
| 695 |
+
" num_spatial_dims = spatial_dims, # spatial dimensions \n",
|
| 696 |
+
" \n",
|
| 697 |
+
" num_train_samples = num_train_samples, # number of ICs for train set\n",
|
| 698 |
+
" \n",
|
| 699 |
+
" train_temporal_horizon = train_time_steps, # consecutive time steps the simulator is run\n",
|
| 700 |
+
"\n",
|
| 701 |
+
" train_seed = 0,\n",
|
| 702 |
+
"\n",
|
| 703 |
+
" num_test_samples = num_test_samples, # number of ICs for test set\n",
|
| 704 |
+
" \n",
|
| 705 |
+
" test_temporal_horizon = test_time_steps, # consecutive time steps the simulator is run for test set\n",
|
| 706 |
+
"\n",
|
| 707 |
+
" test_seed = 773,\n",
|
| 708 |
+
")"
|
| 709 |
+
]
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"cell_type": "code",
|
| 713 |
+
"execution_count": 40,
|
| 714 |
+
"id": "9e5a8c4c-fe32-4e49-9504-bd423d5deb95",
|
| 715 |
+
"metadata": {},
|
| 716 |
+
"outputs": [
|
| 717 |
+
{
|
| 718 |
+
"name": "stdout",
|
| 719 |
+
"output_type": "stream",
|
| 720 |
+
"text": [
|
| 721 |
+
"train data shape (100, 51, 1, 128, 128)\n",
|
| 722 |
+
"test ICs shape (40, 1, 128, 128)\n",
|
| 723 |
+
"complete test data shape (30, 201, 2, 128, 128)\n",
|
| 724 |
+
"val data (10, 51, 1, 128, 128)\n",
|
| 725 |
+
"test data after removing val (30, 201, 1, 128, 128)\n"
|
| 726 |
+
]
|
| 727 |
+
}
|
| 728 |
+
],
|
| 729 |
+
"source": [
|
| 730 |
+
"# data from hyper diffusion\n",
|
| 731 |
+
"train_data = dypdiff2D_scenario.get_train_data()\n",
|
| 732 |
+
"print('train data shape',train_data.shape)\n",
|
| 733 |
+
"\n",
|
| 734 |
+
"test_ic_set = dypdiff2D_scenario.get_test_ic_set()\n",
|
| 735 |
+
"print('test ICs shape',test_ic_set.shape)\n",
|
| 736 |
+
"\n",
|
| 737 |
+
"full_test_data = dypdiff2D_scenario.get_test_data() # [:,1:,:,:] # removing the initial condition from test set\n",
|
| 738 |
+
"print('complete test data shape',test_data.shape)\n",
|
| 739 |
+
"\n",
|
| 740 |
+
"val_data = full_test_data[:10,:51,:,:]\n",
|
| 741 |
+
"print('val data',val_data.shape)\n",
|
| 742 |
+
"\n",
|
| 743 |
+
"test_data = full_test_data[10:,:,:,:]\n",
|
| 744 |
+
"print('test data after removing val',test_data.shape)"
|
| 745 |
+
]
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"cell_type": "code",
|
| 749 |
+
"execution_count": 41,
|
| 750 |
+
"id": "1916cc3d-342c-4aaa-8e0a-48fdea75ced7",
|
| 751 |
+
"metadata": {},
|
| 752 |
+
"outputs": [],
|
| 753 |
+
"source": [
|
| 754 |
+
"# jnp.save(\"dypdiff2D_train_data_128x128_100ic_50t.npy\", train_data)\n",
|
| 755 |
+
"# jnp.save(\"dypdiff2D_val_data_128x128_10ic_50t.npy\", val_data)\n",
|
| 756 |
+
"# jnp.save(\"dypdiff2D_test_data_128x128_30ic_200t.npy\", test_data)\n"
|
| 757 |
+
]
|
| 758 |
+
}
|
| 759 |
+
],
|
| 760 |
+
"metadata": {
|
| 761 |
+
"kernelspec": {
|
| 762 |
+
"display_name": "Python (apebench)",
|
| 763 |
+
"language": "python",
|
| 764 |
+
"name": "apebench"
|
| 765 |
+
},
|
| 766 |
+
"language_info": {
|
| 767 |
+
"codemirror_mode": {
|
| 768 |
+
"name": "ipython",
|
| 769 |
+
"version": 3
|
| 770 |
+
},
|
| 771 |
+
"file_extension": ".py",
|
| 772 |
+
"mimetype": "text/x-python",
|
| 773 |
+
"name": "python",
|
| 774 |
+
"nbconvert_exporter": "python",
|
| 775 |
+
"pygments_lexer": "ipython3",
|
| 776 |
+
"version": "3.12.9"
|
| 777 |
+
}
|
| 778 |
+
},
|
| 779 |
+
"nbformat": 4,
|
| 780 |
+
"nbformat_minor": 5
|
| 781 |
+
}
|