Upload README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,150 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<div align="center">
|
| 2 |
+
|
| 3 |
+
# Apollo: An Exploration of Video Understanding in Large Multimodal Models
|
| 4 |
+
|
| 5 |
+
<p align="center">
|
| 6 |
+
<img src="assets/icon.jpg" width="150" style="margin-bottom: 0.2;"/>
|
| 7 |
+
<p>
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
<a href="https://arxiv.org/abs/2412.10360" target="_blank">
|
| 11 |
+
<img alt="arXiv" src="https://img.shields.io/badge/arXiv-Apollo-red?logo=arxiv&style=for-the-badge" height="25" />
|
| 12 |
+
</a>
|
| 13 |
+
<a href="https://apollo-lmms.github.io" target="_blank">
|
| 14 |
+
<img alt="Website" src="https://img.shields.io/badge/🌎_Website-apollo--lmms.github.io-blue.svg?style=for-the-badge" height="25" />
|
| 15 |
+
</a>
|
| 16 |
+
<br>
|
| 17 |
+
<a href="https://huggingface.co/Apollo-LMMs" target="_blank">
|
| 18 |
+
<img alt="HF Model: Apollo-LMMs" src="https://img.shields.io/badge/%F0%9F%A4%97%20Model-Apollo--LMMs-ffc107?color=ffc107&logoColor=white&style=for-the-badge" height="25" />
|
| 19 |
+
</a>
|
| 20 |
+
<a href="https://huggingface.co/spaces/Apollo-LMMs/Apollo-3B" target="_blank">
|
| 21 |
+
<img alt="HF Demo: Apollo-3B" src="https://img.shields.io/badge/%F0%9F%A4%97%20Demo-Apollo--3B-ffc107?color=ffc107&logoColor=white&style=for-the-badge" height="25" />
|
| 22 |
+
</a>
|
| 23 |
+
<a href="https://huggingface.co/spaces/Apollo-LMMs/ApolloBench" target="_blank">
|
| 24 |
+
<img alt="HF Leaderboard: ApolloBench" src="https://img.shields.io/badge/%F0%9F%A4%97%20Leaderboard-ApolloBench-ffc107?color=ffc107&logoColor=white&style=for-the-badge" height="25" />
|
| 25 |
+
</a>
|
| 26 |
+
|
| 27 |
+
</div>
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
Apollo is a family of Large Multimodal Models (LMMs) designed to address a broad spectrum of video-language tasks, including long-form video comprehension, temporal reasoning, and multi-turn video conversations. Apollo achieves state-of-the-art performance across several benchmarks and scales efficiently from billions to tens of billions of parameters.
|
| 32 |
+
|
| 33 |
+
## Release
|
| 34 |
+
- **[Dec 13, 2024]** Apollo released!
|
| 35 |
+
- **[Coming soon..]** Training code will be released upon internal approval.
|
| 36 |
+
|
| 37 |
+
## Quick Start
|
| 38 |
+
|
| 39 |
+
### Installation
|
| 40 |
+
|
| 41 |
+
```bash
|
| 42 |
+
pip install -e .
|
| 43 |
+
pip install flash-attn --no-build-isolation
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
### Inference Example
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
import torch
|
| 50 |
+
from transformers import AutoModelForCausalLM
|
| 51 |
+
from apollo.mm_utils import (
|
| 52 |
+
KeywordsStoppingCriteria,
|
| 53 |
+
tokenizer_mm_token,
|
| 54 |
+
ApolloMMLoader
|
| 55 |
+
)
|
| 56 |
+
from apollo.conversations import conv_templates, SeparatorStyle
|
| 57 |
+
from apollo.constants import X_TOKEN, X_TOKEN_INDEX
|
| 58 |
+
from huggingface_hub import snapshot_download
|
| 59 |
+
|
| 60 |
+
# Parameters
|
| 61 |
+
version = "qwen_2"
|
| 62 |
+
model_url = "Apollo-LMMs/Apollo-3B-t32"
|
| 63 |
+
model_path = snapshot_download(model_url, repo_type="model")
|
| 64 |
+
|
| 65 |
+
video_path = "/your/local/path/video.mp4"
|
| 66 |
+
question = "Describe this video in detail"
|
| 67 |
+
temperature = 0.4
|
| 68 |
+
top_p = 0.7
|
| 69 |
+
max_output_tokens = 256
|
| 70 |
+
|
| 71 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 72 |
+
attn_implementation = "sdpa" if torch.__version__ > "2.1.2" else "eager"
|
| 73 |
+
|
| 74 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 75 |
+
model_path,
|
| 76 |
+
trust_remote_code=True,
|
| 77 |
+
low_cpu_mem_usage=True,
|
| 78 |
+
attn_implementation=attn_implementation,
|
| 79 |
+
).to(device=device, dtype=torch.bfloat16)
|
| 80 |
+
|
| 81 |
+
tokenizer = model.tokenizer
|
| 82 |
+
vision_processors = model.vision_tower.vision_processor
|
| 83 |
+
config = model.config
|
| 84 |
+
max_length = config.llm_cfg['model_max_length']
|
| 85 |
+
num_repeat_token = config.mm_connector_cfg['num_output_tokens']
|
| 86 |
+
mm_use_im_start_end = config.use_mm_start_end
|
| 87 |
+
|
| 88 |
+
frames_per_clip = 4
|
| 89 |
+
clip_duration = getattr(config, 'clip_duration')
|
| 90 |
+
|
| 91 |
+
mm_processor = ApolloMMLoader(
|
| 92 |
+
vision_processors,
|
| 93 |
+
clip_duration,
|
| 94 |
+
frames_per_clip,
|
| 95 |
+
clip_sampling_ratio=0.65,
|
| 96 |
+
model_max_length=config.model_max_length,
|
| 97 |
+
device=device,
|
| 98 |
+
num_repeat_token=num_repeat_token
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
model.eval()
|
| 102 |
+
|
| 103 |
+
mm_data, replace_string = mm_processor.load_video(video_path)
|
| 104 |
+
message = replace_string + "\n\n" + question
|
| 105 |
+
|
| 106 |
+
conv = conv_templates[version].copy()
|
| 107 |
+
conv.append_message(conv.roles[0], message)
|
| 108 |
+
conv.append_message(conv.roles[1], None)
|
| 109 |
+
prompt = conv.get_prompt()
|
| 110 |
+
|
| 111 |
+
input_ids = tokenizer_mm_token(prompt, tokenizer, return_tensors="pt").unsqueeze(0).to(device)
|
| 112 |
+
|
| 113 |
+
pad_token_ids = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id
|
| 114 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 115 |
+
keywords = [stop_str]
|
| 116 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 117 |
+
|
| 118 |
+
with torch.inference_mode():
|
| 119 |
+
output_ids = model.generate(
|
| 120 |
+
input_ids,
|
| 121 |
+
vision_input=[mm_data],
|
| 122 |
+
data_types=['video'],
|
| 123 |
+
do_sample=(temperature > 0),
|
| 124 |
+
temperature=temperature,
|
| 125 |
+
max_new_tokens=max_output_tokens,
|
| 126 |
+
top_p=top_p,
|
| 127 |
+
use_cache=True,
|
| 128 |
+
num_beams=1,
|
| 129 |
+
stopping_criteria=[stopping_criteria]
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
| 133 |
+
print(pred)
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
### PEFT (Parameter-Efficient Fine-Tuning)
|
| 137 |
+
- **(Coming soon..)** We will provide examples and documentation on how to apply low-rank adaptation (LoRA) and other parameter-efficient fine-tuning techniques to Apollo.
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
## Citation
|
| 141 |
+
|
| 142 |
+
If you find Apollo useful in your research, please cite:
|
| 143 |
+
```bibtex
|
| 144 |
+
@article{apollo,
|
| 145 |
+
title={Apollo: An Exploration of Video Understanding in Large Multimodal Models},
|
| 146 |
+
author={Orr Zohar, Xiaohan Wang, Yann Dubois, Nikhil Mehta, Tong Xiao, Philippe Hansen-Estruch, Licheng Yu, Xiaofang Wang, Felix Juefei-Xu, Ning Zhang, Serena Yeung-Levy, and Xide Xia},
|
| 147 |
+
journal={arXiv preprint arXiv:2412.10360},
|
| 148 |
+
year={2024}
|
| 149 |
+
}
|
| 150 |
+
```
|