Papers
arxiv:1905.06118

Learning to Groove with Inverse Sequence Transformations

Published on May 14, 2019
Authors:
,
,
,
,

Abstract

Researchers develop Seq2Seq and recurrent VIB models for translating musical scores into expressive performances, leveraging GAN-based approaches to generate paired training data through simple transformations and releasing a new dataset with professional drumming recordings.

AI-generated summary

We explore models for translating abstract musical ideas (scores, rhythms) into expressive performances using Seq2Seq and recurrent Variational Information Bottleneck (VIB) models. Though Seq2Seq models usually require painstakingly aligned corpora, we show that it is possible to adapt an approach from the Generative Adversarial Network (GAN) literature (e.g. Pix2Pix (Isola et al., 2017) and Vid2Vid (Wang et al. 2018a)) to sequences, creating large volumes of paired data by performing simple transformations and training generative models to plausibly invert these transformations. Music, and drumming in particular, provides a strong test case for this approach because many common transformations (quantization, removing voices) have clear semantics, and models for learning to invert them have real-world applications. Focusing on the case of drum set players, we create and release a new dataset for this purpose, containing over 13 hours of recordings by professional drummers aligned with fine-grained timing and dynamics information. We also explore some of the creative potential of these models, including demonstrating improvements on state-of-the-art methods for Humanization (instantiating a performance from a musical score).

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/1905.06118 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/1905.06118 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/1905.06118 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.