WeMMU: Enhanced Bridging of Vision-Language Models and Diffusion Models via Noisy Query Tokens
Abstract
Recent advances in multimodal large language models highlight the challenge of efficiently connecting vision-language models with diffusion models, where fixed query tokens cause task generalization issues; this work proposes noisy query tokens and a VAE branch to enhance continual learning and detail recovery.
Recent progress in multimodal large language models (MLLMs) has highlighted the challenge of efficiently bridging pre-trained Vision-Language Models (VLMs) with Diffusion Models. While methods using a fixed number of learnable query tokens offer computational efficiency, they suffer from task generalization collapse, failing to adapt to new tasks that are distant from their pre-training tasks. To overcome this, we propose Noisy Query Tokens, which learn a distributed representation space between the VLM and Diffusion Model via end-to-end optimization, enhancing continual learning. Additionally, we introduce a VAE branch with linear projection to recover fine-grained image details. Experimental results confirm our approach mitigates generalization collapse and enables stable continual learning across diverse tasks.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper