sequelbox commited on
Commit
0496519
·
verified ·
1 Parent(s): 088cd1a

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - dag-reasoning
8
+ - gpt
9
+ - gpt-oss
10
+ - gpt-oss-20b
11
+ - openai
12
+ - 20b
13
+ - reasoning
14
+ - directed-acyclic-graph
15
+ - graph
16
+ - logic
17
+ - analysis
18
+ - programming
19
+ - knowledge
20
+ - root-cause-analysis
21
+ - economics
22
+ - business
23
+ - business-management
24
+ - finance
25
+ - law
26
+ - supply-chain
27
+ - logistics
28
+ - software-engineering
29
+ - cybersecurity
30
+ - architecture
31
+ - energy
32
+ - politics
33
+ - problem-solving
34
+ - creative
35
+ - analytical
36
+ - expert
37
+ - rationality
38
+ - conversational
39
+ - chat
40
+ - instruct
41
+ base_model: openai/gpt-oss-20b
42
+ datasets:
43
+ - sequelbox/DAG-Reasoning-DeepSeek-R1-0528
44
+ license: apache-2.0
45
+ ---
46
+
47
+
48
+ **[Support our open-source dataset and model releases!](https://huggingface.co/spaces/sequelbox/SupportOpenSource)**
49
+
50
+
51
+ DAG Reasoning: [Qwen3-8B](https://huggingface.co/sequelbox/Qwen3-8B-DAG-Reasoning), [Qwen3-14B](https://huggingface.co/sequelbox/Qwen3-14B-DAG-Reasoning), [gpt-oss-20b](https://huggingface.co/sequelbox/gpt-oss-20b-DAG-Reasoning)
52
+
53
+
54
+ DAG Reasoning is an **experimental specialist reasoning AI with custom output format**; for general reasoning and chat, try [Shining Valiant 3](https://huggingface.co/ValiantLabs/Qwen3-8B-ShiningValiant3) or [Esper 3!](https://huggingface.co/ValiantLabs/Qwen3-8B-Esper3)
55
+
56
+
57
+ DAG Reasoning is a specialist reasoning assistant, performing causal analysis and reasoning to produce Directed Acyclic Graphs in response to user output.
58
+ - Finetuned on our [DAG dataset](https://huggingface.co/datasets/sequelbox/DAG-Reasoning-DeepSeek-R1-0528) data generated with [Deepseek R1 0528!](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528)
59
+ - Multi-step analysis identifies causal relationships, produces confidence measurements, and forms a single structured graph object.
60
+ - DAG Reasoning Format provides clear, readable JSON containing structured, useful information; easy to use for creating visualizations, doing analysis, or further conversation with your assistant.
61
+ - Trained in a variety of subjects for flexible analysis: programming, science, business, economics, finance, law, logistics, management, and more!
62
+ - Small model sizes allow running on local desktop and mobile, plus super-fast server inference!
63
+
64
+
65
+ ## Prompting Guide
66
+ DAG Reasoning uses the [gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) prompt format to create outputs in [DAG Reasoning Format.](https://huggingface.co/datasets/sequelbox/DAG-Reasoning-DeepSeek-R1-0528)
67
+
68
+ DAG Reasoning is an **experimental reasoning finetune:**
69
+ - the assistant performs multi-step reasoning during the thinking phase, before producing the JSON graph object at the start of the output to the user.
70
+ - request the graph or analysis explicitly in your user prompt to prompt for the [DAG Reasoning Format;](https://huggingface.co/datasets/sequelbox/DAG-Reasoning-DeepSeek-R1-0528) see the example script below for examples. (If the model is unsure of your request, it will generally default to standard gpt-oss-20b output/chat style instead of creating a DAG.)
71
+ - this is an early experimental release: if used in a productive context, structural validation of outputs is strongly recommended.
72
+ - we recommend reasoning level high for all chats.
73
+
74
+ Example inference script to get started:
75
+
76
+ ```python
77
+ from transformers import pipeline
78
+ import torch
79
+
80
+ model_id = "sequelbox/gpt-oss-20b-DAG-Reasoning"
81
+
82
+ pipe = pipeline(
83
+ "text-generation",
84
+ model=model_id,
85
+ torch_dtype="auto",
86
+ device_map="auto",
87
+ )
88
+
89
+ prompt = "Analyze the following scenario from a report on a new industrial park: The park was built on reclaimed swampland. The initial site survey indicated the ground was stable after being drained and filled. However, over the first five years of operation, slow, uneven ground subsidence has caused cracking in the foundations of several large warehouses. The cost of stabilizing these foundations is now projected to be higher than the initial cost of the land itself, and the risk of further subsidence has made the remaining lots in the park unsellable."
90
+ #prompt = "Make a graph of this analysis: In the American West, warmer winters are causing more precipitation to fall as rain instead of snow, even when total precipitation remains unchanged. This has two major consequences for water management. First, runoff occurs immediately in the winter rather than being stored as snowpack until the spring and summer melt. This increases winter flood risk and reduces water availability during the summer growing season. Second, the smaller snowpack reflects less solar radiation, leading to warmer ground temperatures and increased evaporation, further reducing water supply."
91
+ #prompt = "A supply chain security analysis finds: following the disclosure of a critical vulnerability in the widely used Log4j library, we consulted our Software Bill of Materials (SBOM) for a key application, which indicated the application was not affected. However, the application was later compromised via this exact vulnerability. The investigation revealed the SBOM was generated incorrectly and failed to identify Log4j as a transitive dependency, a library pulled in by another library. This inaccurate SBOM led to a false negative in our risk assessment."
92
+ #prompt = "Analyze this and make a graph: A company incurred a $200,000 bill from its cloud provider in one weekend, an attack known as cryptojacking. An attacker discovered an exposed API key in the client-side code of the company's public-facing web application. This key belonged to a role that, due to a misconfiguration, had permissions to create new virtual machine instances. The attacker wrote a script to programmatically spin up thousands of the most powerful, GPU-equipped virtual machines in several different geographic regions to mine cryptocurrency, leading to the massive, unexpected charges."
93
+
94
+ messages = [
95
+ {"role": "user", "content": prompt},
96
+ ]
97
+
98
+ outputs = pipe(
99
+ messages,
100
+ max_new_tokens=12000,
101
+ )
102
+ print(outputs[0]["generated_text"][-1])
103
+ ```
104
+
105
+
106
+ DAG Reasoning is one of our experimental reasoning releases; we've got more to come soon!
107
+
108
+ Do as you will.
chat_template.jinja ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {#-
2
+ In addition to the normal inputs of `messages` and `tools`, this template also accepts the
3
+ following kwargs:
4
+ - "builtin_tools": A list, can contain "browser" and/or "python".
5
+ - "model_identity": A string that optionally describes the model identity.
6
+ - "reasoning_effort": A string that describes the reasoning effort, defaults to "medium".
7
+ #}
8
+
9
+ {#- Tool Definition Rendering ============================================== #}
10
+ {%- macro render_typescript_type(param_spec, required_params, is_nullable=false) -%}
11
+ {%- if param_spec.type == "array" -%}
12
+ {%- if param_spec['items'] -%}
13
+ {%- if param_spec['items']['type'] == "string" -%}
14
+ {{- "string[]" }}
15
+ {%- elif param_spec['items']['type'] == "number" -%}
16
+ {{- "number[]" }}
17
+ {%- elif param_spec['items']['type'] == "integer" -%}
18
+ {{- "number[]" }}
19
+ {%- elif param_spec['items']['type'] == "boolean" -%}
20
+ {{- "boolean[]" }}
21
+ {%- else -%}
22
+ {%- set inner_type = render_typescript_type(param_spec['items'], required_params) -%}
23
+ {%- if inner_type == "object | object" or inner_type|length > 50 -%}
24
+ {{- "any[]" }}
25
+ {%- else -%}
26
+ {{- inner_type + "[]" }}
27
+ {%- endif -%}
28
+ {%- endif -%}
29
+ {%- if param_spec.nullable -%}
30
+ {{- " | null" }}
31
+ {%- endif -%}
32
+ {%- else -%}
33
+ {{- "any[]" }}
34
+ {%- if param_spec.nullable -%}
35
+ {{- " | null" }}
36
+ {%- endif -%}
37
+ {%- endif -%}
38
+ {%- elif param_spec.type is defined and param_spec.type is iterable and param_spec.type is not string and param_spec.type is not mapping and param_spec.type[0] is defined -%}
39
+ {#- Handle array of types like ["object", "object"] from Union[dict, list] #}
40
+ {%- if param_spec.type | length > 1 -%}
41
+ {{- param_spec.type | join(" | ") }}
42
+ {%- else -%}
43
+ {{- param_spec.type[0] }}
44
+ {%- endif -%}
45
+ {%- elif param_spec.oneOf -%}
46
+ {#- Handle oneOf schemas - check for complex unions and fallback to any #}
47
+ {%- set has_object_variants = false -%}
48
+ {%- for variant in param_spec.oneOf -%}
49
+ {%- if variant.type == "object" -%}
50
+ {%- set has_object_variants = true -%}
51
+ {%- endif -%}
52
+ {%- endfor -%}
53
+ {%- if has_object_variants and param_spec.oneOf|length > 1 -%}
54
+ {{- "any" }}
55
+ {%- else -%}
56
+ {%- for variant in param_spec.oneOf -%}
57
+ {{- render_typescript_type(variant, required_params) -}}
58
+ {%- if variant.description %}
59
+ {{- "// " + variant.description }}
60
+ {%- endif -%}
61
+ {%- if variant.default is defined %}
62
+ {{ "// default: " + variant.default|tojson }}
63
+ {%- endif -%}
64
+ {%- if not loop.last %}
65
+ {{- " | " }}
66
+ {% endif -%}
67
+ {%- endfor -%}
68
+ {%- endif -%}
69
+ {%- elif param_spec.type == "string" -%}
70
+ {%- if param_spec.enum -%}
71
+ {{- '"' + param_spec.enum|join('" | "') + '"' -}}
72
+ {%- else -%}
73
+ {{- "string" }}
74
+ {%- if param_spec.nullable %}
75
+ {{- " | null" }}
76
+ {%- endif -%}
77
+ {%- endif -%}
78
+ {%- elif param_spec.type == "number" -%}
79
+ {{- "number" }}
80
+ {%- elif param_spec.type == "integer" -%}
81
+ {{- "number" }}
82
+ {%- elif param_spec.type == "boolean" -%}
83
+ {{- "boolean" }}
84
+
85
+ {%- elif param_spec.type == "object" -%}
86
+ {%- if param_spec.properties -%}
87
+ {{- "{\n" }}
88
+ {%- for prop_name, prop_spec in param_spec.properties.items() -%}
89
+ {{- prop_name -}}
90
+ {%- if prop_name not in (param_spec.required or []) -%}
91
+ {{- "?" }}
92
+ {%- endif -%}
93
+ {{- ": " }}
94
+ {{ render_typescript_type(prop_spec, param_spec.required or []) }}
95
+ {%- if not loop.last -%}
96
+ {{-", " }}
97
+ {%- endif -%}
98
+ {%- endfor -%}
99
+ {{- "}" }}
100
+ {%- else -%}
101
+ {{- "object" }}
102
+ {%- endif -%}
103
+ {%- else -%}
104
+ {{- "any" }}
105
+ {%- endif -%}
106
+ {%- endmacro -%}
107
+
108
+ {%- macro render_tool_namespace(namespace_name, tools) -%}
109
+ {{- "## " + namespace_name + "\n\n" }}
110
+ {{- "namespace " + namespace_name + " {\n\n" }}
111
+ {%- for tool in tools %}
112
+ {%- set tool = tool.function %}
113
+ {{- "// " + tool.description + "\n" }}
114
+ {{- "type "+ tool.name + " = " }}
115
+ {%- if tool.parameters and tool.parameters.properties %}
116
+ {{- "(_: {\n" }}
117
+ {%- for param_name, param_spec in tool.parameters.properties.items() %}
118
+ {%- if param_spec.description %}
119
+ {{- "// " + param_spec.description + "\n" }}
120
+ {%- endif %}
121
+ {{- param_name }}
122
+ {%- if param_name not in (tool.parameters.required or []) -%}
123
+ {{- "?" }}
124
+ {%- endif -%}
125
+ {{- ": " }}
126
+ {{- render_typescript_type(param_spec, tool.parameters.required or []) }}
127
+ {%- if param_spec.default is defined -%}
128
+ {%- if param_spec.enum %}
129
+ {{- ", // default: " + param_spec.default }}
130
+ {%- elif param_spec.oneOf %}
131
+ {{- "// default: " + param_spec.default }}
132
+ {%- else %}
133
+ {{- ", // default: " + param_spec.default|tojson }}
134
+ {%- endif -%}
135
+ {%- endif -%}
136
+ {%- if not loop.last %}
137
+ {{- ",\n" }}
138
+ {%- else %}
139
+ {{- ",\n" }}
140
+ {%- endif -%}
141
+ {%- endfor %}
142
+ {{- "}) => any;\n\n" }}
143
+ {%- else -%}
144
+ {{- "() => any;\n\n" }}
145
+ {%- endif -%}
146
+ {%- endfor %}
147
+ {{- "} // namespace " + namespace_name }}
148
+ {%- endmacro -%}
149
+
150
+ {%- macro render_builtin_tools(browser_tool, python_tool) -%}
151
+ {%- if browser_tool %}
152
+ {{- "## browser\n\n" }}
153
+ {{- "// Tool for browsing.\n" }}
154
+ {{- "// The `cursor` appears in brackets before each browsing display: `[{cursor}]`.\n" }}
155
+ {{- "// Cite information from the tool using the following format:\n" }}
156
+ {{- "// `【{cursor}†L{line_start}(-L{line_end})?】`, for example: `【6†L9-L11】` or `【8†L3】`.\n" }}
157
+ {{- "// Do not quote more than 10 words directly from the tool output.\n" }}
158
+ {{- "// sources=web (default: web)\n" }}
159
+ {{- "namespace browser {\n\n" }}
160
+ {{- "// Searches for information related to `query` and displays `topn` results.\n" }}
161
+ {{- "type search = (_: {\n" }}
162
+ {{- "query: string,\n" }}
163
+ {{- "topn?: number, // default: 10\n" }}
164
+ {{- "source?: string,\n" }}
165
+ {{- "}) => any;\n\n" }}
166
+ {{- "// Opens the link `id` from the page indicated by `cursor` starting at line number `loc`, showing `num_lines` lines.\n" }}
167
+ {{- "// Valid link ids are displayed with the formatting: `【{id}†.*】`.\n" }}
168
+ {{- "// If `cursor` is not provided, the most recent page is implied.\n" }}
169
+ {{- "// If `id` is a string, it is treated as a fully qualified URL associated with `source`.\n" }}
170
+ {{- "// If `loc` is not provided, the viewport will be positioned at the beginning of the document or centered on the most relevant passage, if available.\n" }}
171
+ {{- "// Use this function without `id` to scroll to a new location of an opened page.\n" }}
172
+ {{- "type open = (_: {\n" }}
173
+ {{- "id?: number | string, // default: -1\n" }}
174
+ {{- "cursor?: number, // default: -1\n" }}
175
+ {{- "loc?: number, // default: -1\n" }}
176
+ {{- "num_lines?: number, // default: -1\n" }}
177
+ {{- "view_source?: boolean, // default: false\n" }}
178
+ {{- "source?: string,\n" }}
179
+ {{- "}) => any;\n\n" }}
180
+ {{- "// Finds exact matches of `pattern` in the current page, or the page given by `cursor`.\n" }}
181
+ {{- "type find = (_: {\n" }}
182
+ {{- "pattern: string,\n" }}
183
+ {{- "cursor?: number, // default: -1\n" }}
184
+ {{- "}) => any;\n\n" }}
185
+ {{- "} // namespace browser\n\n" }}
186
+ {%- endif -%}
187
+
188
+ {%- if python_tool %}
189
+ {{- "## python\n\n" }}
190
+ {{- "Use this tool to execute Python code in your chain of thought. The code will not be shown to the user. This tool should be used for internal reasoning, but not for code that is intended to be visible to the user (e.g. when creating plots, tables, or files).\n\n" }}
191
+ {{- "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 120.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is UNKNOWN. Depends on the cluster.\n\n" }}
192
+ {%- endif -%}
193
+ {%- endmacro -%}
194
+
195
+ {#- System Message Construction ============================================ #}
196
+ {%- macro build_system_message() -%}
197
+ {%- if model_identity is not defined %}
198
+ {%- set model_identity = "You are ChatGPT, a large language model trained by OpenAI." %}
199
+ {%- endif %}
200
+ {{- model_identity + "\n" }}
201
+ {{- "Knowledge cutoff: 2024-06\n" }}
202
+ {{- "Current date: " + strftime_now("%Y-%m-%d") + "\n\n" }}
203
+ {%- if reasoning_effort is not defined %}
204
+ {%- set reasoning_effort = "medium" %}
205
+ {%- endif %}
206
+ {{- "Reasoning: " + reasoning_effort + "\n\n" }}
207
+ {%- if builtin_tools %}
208
+ {{- "# Tools\n\n" }}
209
+ {%- set available_builtin_tools = namespace(browser=false, python=false) %}
210
+ {%- for tool in builtin_tools %}
211
+ {%- if tool == "browser" %}
212
+ {%- set available_builtin_tools.browser = true %}
213
+ {%- elif tool == "python" %}
214
+ {%- set available_builtin_tools.python = true %}
215
+ {%- endif %}
216
+ {%- endfor %}
217
+ {{- render_builtin_tools(available_builtin_tools.browser, available_builtin_tools.python) }}
218
+ {%- endif -%}
219
+ {{- "# Valid channels: analysis, commentary, final. Channel must be included for every message." }}
220
+ {%- if tools -%}
221
+ {{- "\nCalls to these tools must go to the commentary channel: 'functions'." }}
222
+ {%- endif -%}
223
+ {%- endmacro -%}
224
+
225
+ {#- Main Template Logic ================================================= #}
226
+ {#- Set defaults #}
227
+
228
+ {#- Render system message #}
229
+ {{- "<|start|>system<|message|>" }}
230
+ {{- build_system_message() }}
231
+ {{- "<|end|>" }}
232
+
233
+ {#- Extract developer message #}
234
+ {%- if messages[0].role == "developer" or messages[0].role == "system" %}
235
+ {%- set developer_message = messages[0].content %}
236
+ {%- set loop_messages = messages[1:] %}
237
+ {%- else %}
238
+ {%- set developer_message = "" %}
239
+ {%- set loop_messages = messages %}
240
+ {%- endif %}
241
+
242
+ {#- Render developer message #}
243
+ {%- if developer_message or tools %}
244
+ {{- "<|start|>developer<|message|>" }}
245
+ {%- if developer_message %}
246
+ {{- "# Instructions\n\n" }}
247
+ {{- developer_message }}
248
+ {{- "\n\n" }}
249
+ {%- endif %}
250
+ {%- if tools -%}
251
+ {{- "# Tools\n\n" }}
252
+ {{- render_tool_namespace("functions", tools) }}
253
+ {%- endif -%}
254
+ {{- "<|end|>" }}
255
+ {%- endif %}
256
+
257
+ {#- Render messages #}
258
+ {%- set last_tool_call = namespace(name=none) %}
259
+ {%- for message in loop_messages -%}
260
+ {#- At this point only assistant/user/tool messages should remain #}
261
+ {%- if message.role == 'assistant' -%}
262
+ {#- Checks to ensure the messages are being passed in the format we expect #}
263
+ {%- if "content" in message %}
264
+ {%- if "<|channel|>analysis<|message|>" in message.content or "<|channel|>final<|message|>" in message.content %}
265
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the content field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
266
+ {%- endif %}
267
+ {%- endif %}
268
+ {%- if "thinking" in message %}
269
+ {%- if "<|channel|>analysis<|message|>" in message.thinking or "<|channel|>final<|message|>" in message.thinking %}
270
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the thinking field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
271
+ {%- endif %}
272
+ {%- endif %}
273
+ {%- if "tool_calls" in message %}
274
+ {#- We need very careful handling here - we want to drop the tool call analysis message if the model #}
275
+ {#- has output a later <|final|> message, but otherwise we want to retain it. This is the only case #}
276
+ {#- when we render CoT/analysis messages in inference. #}
277
+ {%- set future_final_message = namespace(found=false) %}
278
+ {%- for future_message in loop_messages[loop.index:] %}
279
+ {%- if future_message.role == 'assistant' and "tool_calls" not in future_message %}
280
+ {%- set future_final_message.found = true %}
281
+ {%- endif %}
282
+ {%- endfor %}
283
+ {#- We assume max 1 tool call per message, and so we infer the tool call name #}
284
+ {#- in "tool" messages from the most recent assistant tool call name #}
285
+ {%- set tool_call = message.tool_calls[0] %}
286
+ {%- if tool_call.function %}
287
+ {%- set tool_call = tool_call.function %}
288
+ {%- endif %}
289
+ {%- if message.content and message.thinking %}
290
+ {{- raise_exception("Cannot pass both content and thinking in an assistant message with tool calls! Put the analysis message in one or the other, but not both.") }}
291
+ {%- elif message.content and not future_final_message.found %}
292
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.content + "<|end|>" }}
293
+ {%- elif message.thinking and not future_final_message.found %}
294
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
295
+ {%- endif %}
296
+ {{- "<|start|>assistant to=" }}
297
+ {{- "functions." + tool_call.name + "<|channel|>commentary " }}
298
+ {{- (tool_call.content_type if tool_call.content_type is defined else "json") + "<|message|>" }}
299
+ {{- tool_call.arguments|tojson }}
300
+ {{- "<|call|>" }}
301
+ {%- set last_tool_call.name = tool_call.name %}
302
+ {%- elif loop.last and not add_generation_prompt %}
303
+ {#- Only render the CoT if the final turn is an assistant turn and add_generation_prompt is false #}
304
+ {#- This is a situation that should only occur in training, never in inference. #}
305
+ {%- if "thinking" in message %}
306
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
307
+ {%- endif %}
308
+ {#- <|return|> indicates the end of generation, but <|end|> does not #}
309
+ {#- <|return|> should never be an input to the model, but we include it as the final token #}
310
+ {#- when training, so the model learns to emit it. #}
311
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|return|>" }}
312
+ {%- else %}
313
+ {#- CoT is dropped during all previous turns, so we never render it for inference #}
314
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|end|>" }}
315
+ {%- set last_tool_call.name = none %}
316
+ {%- endif %}
317
+ {%- elif message.role == 'tool' -%}
318
+ {%- if last_tool_call.name is none %}
319
+ {{- raise_exception("Message has tool role, but there was no previous assistant message with a tool call!") }}
320
+ {%- endif %}
321
+ {{- "<|start|>functions." + last_tool_call.name }}
322
+ {{- " to=assistant<|channel|>commentary<|message|>" + message.content|tojson + "<|end|>" }}
323
+ {%- elif message.role == 'user' -%}
324
+ {{- "<|start|>user<|message|>" + message.content + "<|end|>" }}
325
+ {%- endif -%}
326
+ {%- endfor -%}
327
+
328
+ {#- Generation prompt #}
329
+ {%- if add_generation_prompt -%}
330
+ <|start|>assistant
331
+ {%- endif -%}
config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "GptOssForCausalLM"
4
+ ],
5
+ "attention_bias": true,
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 200002,
8
+ "experts_per_token": 4,
9
+ "head_dim": 64,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2880,
12
+ "initial_context_length": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 2880,
15
+ "layer_types": [
16
+ "sliding_attention",
17
+ "full_attention",
18
+ "sliding_attention",
19
+ "full_attention",
20
+ "sliding_attention",
21
+ "full_attention",
22
+ "sliding_attention",
23
+ "full_attention",
24
+ "sliding_attention",
25
+ "full_attention",
26
+ "sliding_attention",
27
+ "full_attention",
28
+ "sliding_attention",
29
+ "full_attention",
30
+ "sliding_attention",
31
+ "full_attention",
32
+ "sliding_attention",
33
+ "full_attention",
34
+ "sliding_attention",
35
+ "full_attention",
36
+ "sliding_attention",
37
+ "full_attention",
38
+ "sliding_attention",
39
+ "full_attention"
40
+ ],
41
+ "max_position_embeddings": 131072,
42
+ "model_type": "gpt_oss",
43
+ "num_attention_heads": 64,
44
+ "num_experts_per_tok": 4,
45
+ "num_hidden_layers": 24,
46
+ "num_key_value_heads": 8,
47
+ "num_local_experts": 32,
48
+ "output_router_logits": false,
49
+ "pad_token_id": 199999,
50
+ "rms_norm_eps": 1e-05,
51
+ "rope_scaling": {
52
+ "beta_fast": 32.0,
53
+ "beta_slow": 1.0,
54
+ "factor": 32.0,
55
+ "original_max_position_embeddings": 4096,
56
+ "rope_type": "yarn",
57
+ "truncate": false
58
+ },
59
+ "rope_theta": 150000,
60
+ "router_aux_loss_coef": 0.9,
61
+ "sliding_window": 128,
62
+ "swiglu_limit": 7.0,
63
+ "tie_word_embeddings": false,
64
+ "torch_dtype": "bfloat16",
65
+ "transformers_version": "4.55.0",
66
+ "use_cache": true,
67
+ "vocab_size": 201088
68
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 199998,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 200002,
6
+ 199999
7
+ ],
8
+ "pad_token_id": 199999,
9
+ "transformers_version": "4.55.0"
10
+ }
model-00001-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:656b453f22f0bc2b8801109c4710721e2809ad14a03a58536400cf6d473d7bc2
3
+ size 4504304664
model-00002-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:801adfdd63ef9ce2e6e83afbb73d6ece6b46a1478d823ad2f0ca739eacecdc8b
3
+ size 4939127656
model-00003-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7043db7784a348b70196ddbaff2dd02dd8bb89ab1445b85b0dd633820a236d96
3
+ size 4939127656
model-00004-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:837df8573b259e2b98e307662d39b9fb25f863040ab0bb819184a13795e8d60a
3
+ size 4939127680
model-00005-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9d5bd4b8d61c2aebfeb7a80e0446efb675dc0ffbf45cfa2af78866df0f650c8
3
+ size 4939127704
model-00006-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab82677e38a4ab2d102f5c86c7f50875306edcd67128876fe95035b298491faf
3
+ size 4939127704
model-00007-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0b9248055c87f08d1039db9f61b1c21e971b7a0d3075640a6dac4473fd548ab
3
+ size 4939127704
model-00008-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9304e026f48a0b4b28ef0c50b049d05240ab917ace9e286e00251490a44dbdb1
3
+ size 4939127704
model-00009-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c1951ff65d233bcb7f50485d294cced6497b8e0d9707f57087912fc2352492e
3
+ size 2751362856
model.safetensors.index.json ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 20914757184,
4
+ "total_size": 41829514368
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00009-of-00009.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00009.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00009.safetensors",
10
+ "model.layers.0.mlp.experts.down_proj": "model-00001-of-00009.safetensors",
11
+ "model.layers.0.mlp.experts.down_proj_bias": "model-00001-of-00009.safetensors",
12
+ "model.layers.0.mlp.experts.gate_up_proj": "model-00001-of-00009.safetensors",
13
+ "model.layers.0.mlp.experts.gate_up_proj_bias": "model-00001-of-00009.safetensors",
14
+ "model.layers.0.mlp.router.bias": "model-00001-of-00009.safetensors",
15
+ "model.layers.0.mlp.router.weight": "model-00001-of-00009.safetensors",
16
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
17
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00009.safetensors",
18
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
19
+ "model.layers.0.self_attn.o_proj.bias": "model-00001-of-00009.safetensors",
20
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
21
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00009.safetensors",
22
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
23
+ "model.layers.0.self_attn.sinks": "model-00001-of-00009.safetensors",
24
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00009.safetensors",
25
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
26
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00009.safetensors",
27
+ "model.layers.1.mlp.experts.down_proj": "model-00001-of-00009.safetensors",
28
+ "model.layers.1.mlp.experts.down_proj_bias": "model-00001-of-00009.safetensors",
29
+ "model.layers.1.mlp.experts.gate_up_proj": "model-00001-of-00009.safetensors",
30
+ "model.layers.1.mlp.experts.gate_up_proj_bias": "model-00001-of-00009.safetensors",
31
+ "model.layers.1.mlp.router.bias": "model-00001-of-00009.safetensors",
32
+ "model.layers.1.mlp.router.weight": "model-00001-of-00009.safetensors",
33
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
34
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00009.safetensors",
35
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
36
+ "model.layers.1.self_attn.o_proj.bias": "model-00001-of-00009.safetensors",
37
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
38
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00009.safetensors",
39
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
40
+ "model.layers.1.self_attn.sinks": "model-00001-of-00009.safetensors",
41
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00009.safetensors",
42
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
43
+ "model.layers.10.input_layernorm.weight": "model-00004-of-00009.safetensors",
44
+ "model.layers.10.mlp.experts.down_proj": "model-00004-of-00009.safetensors",
45
+ "model.layers.10.mlp.experts.down_proj_bias": "model-00004-of-00009.safetensors",
46
+ "model.layers.10.mlp.experts.gate_up_proj": "model-00004-of-00009.safetensors",
47
+ "model.layers.10.mlp.experts.gate_up_proj_bias": "model-00004-of-00009.safetensors",
48
+ "model.layers.10.mlp.router.bias": "model-00004-of-00009.safetensors",
49
+ "model.layers.10.mlp.router.weight": "model-00004-of-00009.safetensors",
50
+ "model.layers.10.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
51
+ "model.layers.10.self_attn.k_proj.bias": "model-00004-of-00009.safetensors",
52
+ "model.layers.10.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
53
+ "model.layers.10.self_attn.o_proj.bias": "model-00004-of-00009.safetensors",
54
+ "model.layers.10.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
55
+ "model.layers.10.self_attn.q_proj.bias": "model-00004-of-00009.safetensors",
56
+ "model.layers.10.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
57
+ "model.layers.10.self_attn.sinks": "model-00004-of-00009.safetensors",
58
+ "model.layers.10.self_attn.v_proj.bias": "model-00004-of-00009.safetensors",
59
+ "model.layers.10.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
60
+ "model.layers.11.input_layernorm.weight": "model-00005-of-00009.safetensors",
61
+ "model.layers.11.mlp.experts.down_proj": "model-00005-of-00009.safetensors",
62
+ "model.layers.11.mlp.experts.down_proj_bias": "model-00005-of-00009.safetensors",
63
+ "model.layers.11.mlp.experts.gate_up_proj": "model-00005-of-00009.safetensors",
64
+ "model.layers.11.mlp.experts.gate_up_proj_bias": "model-00005-of-00009.safetensors",
65
+ "model.layers.11.mlp.router.bias": "model-00004-of-00009.safetensors",
66
+ "model.layers.11.mlp.router.weight": "model-00004-of-00009.safetensors",
67
+ "model.layers.11.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
68
+ "model.layers.11.self_attn.k_proj.bias": "model-00004-of-00009.safetensors",
69
+ "model.layers.11.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
70
+ "model.layers.11.self_attn.o_proj.bias": "model-00004-of-00009.safetensors",
71
+ "model.layers.11.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
72
+ "model.layers.11.self_attn.q_proj.bias": "model-00004-of-00009.safetensors",
73
+ "model.layers.11.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
74
+ "model.layers.11.self_attn.sinks": "model-00004-of-00009.safetensors",
75
+ "model.layers.11.self_attn.v_proj.bias": "model-00004-of-00009.safetensors",
76
+ "model.layers.11.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
77
+ "model.layers.12.input_layernorm.weight": "model-00005-of-00009.safetensors",
78
+ "model.layers.12.mlp.experts.down_proj": "model-00005-of-00009.safetensors",
79
+ "model.layers.12.mlp.experts.down_proj_bias": "model-00005-of-00009.safetensors",
80
+ "model.layers.12.mlp.experts.gate_up_proj": "model-00005-of-00009.safetensors",
81
+ "model.layers.12.mlp.experts.gate_up_proj_bias": "model-00005-of-00009.safetensors",
82
+ "model.layers.12.mlp.router.bias": "model-00005-of-00009.safetensors",
83
+ "model.layers.12.mlp.router.weight": "model-00005-of-00009.safetensors",
84
+ "model.layers.12.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
85
+ "model.layers.12.self_attn.k_proj.bias": "model-00005-of-00009.safetensors",
86
+ "model.layers.12.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
87
+ "model.layers.12.self_attn.o_proj.bias": "model-00005-of-00009.safetensors",
88
+ "model.layers.12.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
89
+ "model.layers.12.self_attn.q_proj.bias": "model-00005-of-00009.safetensors",
90
+ "model.layers.12.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
91
+ "model.layers.12.self_attn.sinks": "model-00005-of-00009.safetensors",
92
+ "model.layers.12.self_attn.v_proj.bias": "model-00005-of-00009.safetensors",
93
+ "model.layers.12.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
94
+ "model.layers.13.input_layernorm.weight": "model-00005-of-00009.safetensors",
95
+ "model.layers.13.mlp.experts.down_proj": "model-00005-of-00009.safetensors",
96
+ "model.layers.13.mlp.experts.down_proj_bias": "model-00005-of-00009.safetensors",
97
+ "model.layers.13.mlp.experts.gate_up_proj": "model-00005-of-00009.safetensors",
98
+ "model.layers.13.mlp.experts.gate_up_proj_bias": "model-00005-of-00009.safetensors",
99
+ "model.layers.13.mlp.router.bias": "model-00005-of-00009.safetensors",
100
+ "model.layers.13.mlp.router.weight": "model-00005-of-00009.safetensors",
101
+ "model.layers.13.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
102
+ "model.layers.13.self_attn.k_proj.bias": "model-00005-of-00009.safetensors",
103
+ "model.layers.13.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
104
+ "model.layers.13.self_attn.o_proj.bias": "model-00005-of-00009.safetensors",
105
+ "model.layers.13.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
106
+ "model.layers.13.self_attn.q_proj.bias": "model-00005-of-00009.safetensors",
107
+ "model.layers.13.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
108
+ "model.layers.13.self_attn.sinks": "model-00005-of-00009.safetensors",
109
+ "model.layers.13.self_attn.v_proj.bias": "model-00005-of-00009.safetensors",
110
+ "model.layers.13.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
111
+ "model.layers.14.input_layernorm.weight": "model-00006-of-00009.safetensors",
112
+ "model.layers.14.mlp.experts.down_proj": "model-00006-of-00009.safetensors",
113
+ "model.layers.14.mlp.experts.down_proj_bias": "model-00006-of-00009.safetensors",
114
+ "model.layers.14.mlp.experts.gate_up_proj": "model-00006-of-00009.safetensors",
115
+ "model.layers.14.mlp.experts.gate_up_proj_bias": "model-00006-of-00009.safetensors",
116
+ "model.layers.14.mlp.router.bias": "model-00005-of-00009.safetensors",
117
+ "model.layers.14.mlp.router.weight": "model-00005-of-00009.safetensors",
118
+ "model.layers.14.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
119
+ "model.layers.14.self_attn.k_proj.bias": "model-00005-of-00009.safetensors",
120
+ "model.layers.14.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
121
+ "model.layers.14.self_attn.o_proj.bias": "model-00005-of-00009.safetensors",
122
+ "model.layers.14.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
123
+ "model.layers.14.self_attn.q_proj.bias": "model-00005-of-00009.safetensors",
124
+ "model.layers.14.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
125
+ "model.layers.14.self_attn.sinks": "model-00005-of-00009.safetensors",
126
+ "model.layers.14.self_attn.v_proj.bias": "model-00005-of-00009.safetensors",
127
+ "model.layers.14.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
128
+ "model.layers.15.input_layernorm.weight": "model-00006-of-00009.safetensors",
129
+ "model.layers.15.mlp.experts.down_proj": "model-00006-of-00009.safetensors",
130
+ "model.layers.15.mlp.experts.down_proj_bias": "model-00006-of-00009.safetensors",
131
+ "model.layers.15.mlp.experts.gate_up_proj": "model-00006-of-00009.safetensors",
132
+ "model.layers.15.mlp.experts.gate_up_proj_bias": "model-00006-of-00009.safetensors",
133
+ "model.layers.15.mlp.router.bias": "model-00006-of-00009.safetensors",
134
+ "model.layers.15.mlp.router.weight": "model-00006-of-00009.safetensors",
135
+ "model.layers.15.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
136
+ "model.layers.15.self_attn.k_proj.bias": "model-00006-of-00009.safetensors",
137
+ "model.layers.15.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
138
+ "model.layers.15.self_attn.o_proj.bias": "model-00006-of-00009.safetensors",
139
+ "model.layers.15.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
140
+ "model.layers.15.self_attn.q_proj.bias": "model-00006-of-00009.safetensors",
141
+ "model.layers.15.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
142
+ "model.layers.15.self_attn.sinks": "model-00006-of-00009.safetensors",
143
+ "model.layers.15.self_attn.v_proj.bias": "model-00006-of-00009.safetensors",
144
+ "model.layers.15.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
145
+ "model.layers.16.input_layernorm.weight": "model-00006-of-00009.safetensors",
146
+ "model.layers.16.mlp.experts.down_proj": "model-00006-of-00009.safetensors",
147
+ "model.layers.16.mlp.experts.down_proj_bias": "model-00006-of-00009.safetensors",
148
+ "model.layers.16.mlp.experts.gate_up_proj": "model-00006-of-00009.safetensors",
149
+ "model.layers.16.mlp.experts.gate_up_proj_bias": "model-00006-of-00009.safetensors",
150
+ "model.layers.16.mlp.router.bias": "model-00006-of-00009.safetensors",
151
+ "model.layers.16.mlp.router.weight": "model-00006-of-00009.safetensors",
152
+ "model.layers.16.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
153
+ "model.layers.16.self_attn.k_proj.bias": "model-00006-of-00009.safetensors",
154
+ "model.layers.16.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
155
+ "model.layers.16.self_attn.o_proj.bias": "model-00006-of-00009.safetensors",
156
+ "model.layers.16.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
157
+ "model.layers.16.self_attn.q_proj.bias": "model-00006-of-00009.safetensors",
158
+ "model.layers.16.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
159
+ "model.layers.16.self_attn.sinks": "model-00006-of-00009.safetensors",
160
+ "model.layers.16.self_attn.v_proj.bias": "model-00006-of-00009.safetensors",
161
+ "model.layers.16.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
162
+ "model.layers.17.input_layernorm.weight": "model-00007-of-00009.safetensors",
163
+ "model.layers.17.mlp.experts.down_proj": "model-00007-of-00009.safetensors",
164
+ "model.layers.17.mlp.experts.down_proj_bias": "model-00007-of-00009.safetensors",
165
+ "model.layers.17.mlp.experts.gate_up_proj": "model-00007-of-00009.safetensors",
166
+ "model.layers.17.mlp.experts.gate_up_proj_bias": "model-00007-of-00009.safetensors",
167
+ "model.layers.17.mlp.router.bias": "model-00006-of-00009.safetensors",
168
+ "model.layers.17.mlp.router.weight": "model-00006-of-00009.safetensors",
169
+ "model.layers.17.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
170
+ "model.layers.17.self_attn.k_proj.bias": "model-00006-of-00009.safetensors",
171
+ "model.layers.17.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
172
+ "model.layers.17.self_attn.o_proj.bias": "model-00006-of-00009.safetensors",
173
+ "model.layers.17.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
174
+ "model.layers.17.self_attn.q_proj.bias": "model-00006-of-00009.safetensors",
175
+ "model.layers.17.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
176
+ "model.layers.17.self_attn.sinks": "model-00006-of-00009.safetensors",
177
+ "model.layers.17.self_attn.v_proj.bias": "model-00006-of-00009.safetensors",
178
+ "model.layers.17.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
179
+ "model.layers.18.input_layernorm.weight": "model-00007-of-00009.safetensors",
180
+ "model.layers.18.mlp.experts.down_proj": "model-00007-of-00009.safetensors",
181
+ "model.layers.18.mlp.experts.down_proj_bias": "model-00007-of-00009.safetensors",
182
+ "model.layers.18.mlp.experts.gate_up_proj": "model-00007-of-00009.safetensors",
183
+ "model.layers.18.mlp.experts.gate_up_proj_bias": "model-00007-of-00009.safetensors",
184
+ "model.layers.18.mlp.router.bias": "model-00007-of-00009.safetensors",
185
+ "model.layers.18.mlp.router.weight": "model-00007-of-00009.safetensors",
186
+ "model.layers.18.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
187
+ "model.layers.18.self_attn.k_proj.bias": "model-00007-of-00009.safetensors",
188
+ "model.layers.18.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
189
+ "model.layers.18.self_attn.o_proj.bias": "model-00007-of-00009.safetensors",
190
+ "model.layers.18.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
191
+ "model.layers.18.self_attn.q_proj.bias": "model-00007-of-00009.safetensors",
192
+ "model.layers.18.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
193
+ "model.layers.18.self_attn.sinks": "model-00007-of-00009.safetensors",
194
+ "model.layers.18.self_attn.v_proj.bias": "model-00007-of-00009.safetensors",
195
+ "model.layers.18.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
196
+ "model.layers.19.input_layernorm.weight": "model-00007-of-00009.safetensors",
197
+ "model.layers.19.mlp.experts.down_proj": "model-00007-of-00009.safetensors",
198
+ "model.layers.19.mlp.experts.down_proj_bias": "model-00007-of-00009.safetensors",
199
+ "model.layers.19.mlp.experts.gate_up_proj": "model-00007-of-00009.safetensors",
200
+ "model.layers.19.mlp.experts.gate_up_proj_bias": "model-00007-of-00009.safetensors",
201
+ "model.layers.19.mlp.router.bias": "model-00007-of-00009.safetensors",
202
+ "model.layers.19.mlp.router.weight": "model-00007-of-00009.safetensors",
203
+ "model.layers.19.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
204
+ "model.layers.19.self_attn.k_proj.bias": "model-00007-of-00009.safetensors",
205
+ "model.layers.19.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
206
+ "model.layers.19.self_attn.o_proj.bias": "model-00007-of-00009.safetensors",
207
+ "model.layers.19.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
208
+ "model.layers.19.self_attn.q_proj.bias": "model-00007-of-00009.safetensors",
209
+ "model.layers.19.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
210
+ "model.layers.19.self_attn.sinks": "model-00007-of-00009.safetensors",
211
+ "model.layers.19.self_attn.v_proj.bias": "model-00007-of-00009.safetensors",
212
+ "model.layers.19.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
213
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00009.safetensors",
214
+ "model.layers.2.mlp.experts.down_proj": "model-00002-of-00009.safetensors",
215
+ "model.layers.2.mlp.experts.down_proj_bias": "model-00002-of-00009.safetensors",
216
+ "model.layers.2.mlp.experts.gate_up_proj": "model-00002-of-00009.safetensors",
217
+ "model.layers.2.mlp.experts.gate_up_proj_bias": "model-00002-of-00009.safetensors",
218
+ "model.layers.2.mlp.router.bias": "model-00001-of-00009.safetensors",
219
+ "model.layers.2.mlp.router.weight": "model-00001-of-00009.safetensors",
220
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
221
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00009.safetensors",
222
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
223
+ "model.layers.2.self_attn.o_proj.bias": "model-00001-of-00009.safetensors",
224
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
225
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00009.safetensors",
226
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
227
+ "model.layers.2.self_attn.sinks": "model-00001-of-00009.safetensors",
228
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00009.safetensors",
229
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
230
+ "model.layers.20.input_layernorm.weight": "model-00008-of-00009.safetensors",
231
+ "model.layers.20.mlp.experts.down_proj": "model-00008-of-00009.safetensors",
232
+ "model.layers.20.mlp.experts.down_proj_bias": "model-00008-of-00009.safetensors",
233
+ "model.layers.20.mlp.experts.gate_up_proj": "model-00008-of-00009.safetensors",
234
+ "model.layers.20.mlp.experts.gate_up_proj_bias": "model-00008-of-00009.safetensors",
235
+ "model.layers.20.mlp.router.bias": "model-00007-of-00009.safetensors",
236
+ "model.layers.20.mlp.router.weight": "model-00007-of-00009.safetensors",
237
+ "model.layers.20.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
238
+ "model.layers.20.self_attn.k_proj.bias": "model-00007-of-00009.safetensors",
239
+ "model.layers.20.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
240
+ "model.layers.20.self_attn.o_proj.bias": "model-00007-of-00009.safetensors",
241
+ "model.layers.20.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
242
+ "model.layers.20.self_attn.q_proj.bias": "model-00007-of-00009.safetensors",
243
+ "model.layers.20.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
244
+ "model.layers.20.self_attn.sinks": "model-00007-of-00009.safetensors",
245
+ "model.layers.20.self_attn.v_proj.bias": "model-00007-of-00009.safetensors",
246
+ "model.layers.20.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
247
+ "model.layers.21.input_layernorm.weight": "model-00008-of-00009.safetensors",
248
+ "model.layers.21.mlp.experts.down_proj": "model-00008-of-00009.safetensors",
249
+ "model.layers.21.mlp.experts.down_proj_bias": "model-00008-of-00009.safetensors",
250
+ "model.layers.21.mlp.experts.gate_up_proj": "model-00008-of-00009.safetensors",
251
+ "model.layers.21.mlp.experts.gate_up_proj_bias": "model-00008-of-00009.safetensors",
252
+ "model.layers.21.mlp.router.bias": "model-00008-of-00009.safetensors",
253
+ "model.layers.21.mlp.router.weight": "model-00008-of-00009.safetensors",
254
+ "model.layers.21.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
255
+ "model.layers.21.self_attn.k_proj.bias": "model-00008-of-00009.safetensors",
256
+ "model.layers.21.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
257
+ "model.layers.21.self_attn.o_proj.bias": "model-00008-of-00009.safetensors",
258
+ "model.layers.21.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
259
+ "model.layers.21.self_attn.q_proj.bias": "model-00008-of-00009.safetensors",
260
+ "model.layers.21.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
261
+ "model.layers.21.self_attn.sinks": "model-00008-of-00009.safetensors",
262
+ "model.layers.21.self_attn.v_proj.bias": "model-00008-of-00009.safetensors",
263
+ "model.layers.21.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
264
+ "model.layers.22.input_layernorm.weight": "model-00008-of-00009.safetensors",
265
+ "model.layers.22.mlp.experts.down_proj": "model-00008-of-00009.safetensors",
266
+ "model.layers.22.mlp.experts.down_proj_bias": "model-00008-of-00009.safetensors",
267
+ "model.layers.22.mlp.experts.gate_up_proj": "model-00008-of-00009.safetensors",
268
+ "model.layers.22.mlp.experts.gate_up_proj_bias": "model-00008-of-00009.safetensors",
269
+ "model.layers.22.mlp.router.bias": "model-00008-of-00009.safetensors",
270
+ "model.layers.22.mlp.router.weight": "model-00008-of-00009.safetensors",
271
+ "model.layers.22.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
272
+ "model.layers.22.self_attn.k_proj.bias": "model-00008-of-00009.safetensors",
273
+ "model.layers.22.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
274
+ "model.layers.22.self_attn.o_proj.bias": "model-00008-of-00009.safetensors",
275
+ "model.layers.22.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
276
+ "model.layers.22.self_attn.q_proj.bias": "model-00008-of-00009.safetensors",
277
+ "model.layers.22.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
278
+ "model.layers.22.self_attn.sinks": "model-00008-of-00009.safetensors",
279
+ "model.layers.22.self_attn.v_proj.bias": "model-00008-of-00009.safetensors",
280
+ "model.layers.22.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
281
+ "model.layers.23.input_layernorm.weight": "model-00009-of-00009.safetensors",
282
+ "model.layers.23.mlp.experts.down_proj": "model-00009-of-00009.safetensors",
283
+ "model.layers.23.mlp.experts.down_proj_bias": "model-00009-of-00009.safetensors",
284
+ "model.layers.23.mlp.experts.gate_up_proj": "model-00009-of-00009.safetensors",
285
+ "model.layers.23.mlp.experts.gate_up_proj_bias": "model-00009-of-00009.safetensors",
286
+ "model.layers.23.mlp.router.bias": "model-00008-of-00009.safetensors",
287
+ "model.layers.23.mlp.router.weight": "model-00008-of-00009.safetensors",
288
+ "model.layers.23.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
289
+ "model.layers.23.self_attn.k_proj.bias": "model-00008-of-00009.safetensors",
290
+ "model.layers.23.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
291
+ "model.layers.23.self_attn.o_proj.bias": "model-00008-of-00009.safetensors",
292
+ "model.layers.23.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
293
+ "model.layers.23.self_attn.q_proj.bias": "model-00008-of-00009.safetensors",
294
+ "model.layers.23.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
295
+ "model.layers.23.self_attn.sinks": "model-00008-of-00009.safetensors",
296
+ "model.layers.23.self_attn.v_proj.bias": "model-00008-of-00009.safetensors",
297
+ "model.layers.23.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
298
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00009.safetensors",
299
+ "model.layers.3.mlp.experts.down_proj": "model-00002-of-00009.safetensors",
300
+ "model.layers.3.mlp.experts.down_proj_bias": "model-00002-of-00009.safetensors",
301
+ "model.layers.3.mlp.experts.gate_up_proj": "model-00002-of-00009.safetensors",
302
+ "model.layers.3.mlp.experts.gate_up_proj_bias": "model-00002-of-00009.safetensors",
303
+ "model.layers.3.mlp.router.bias": "model-00002-of-00009.safetensors",
304
+ "model.layers.3.mlp.router.weight": "model-00002-of-00009.safetensors",
305
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
306
+ "model.layers.3.self_attn.k_proj.bias": "model-00002-of-00009.safetensors",
307
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
308
+ "model.layers.3.self_attn.o_proj.bias": "model-00002-of-00009.safetensors",
309
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
310
+ "model.layers.3.self_attn.q_proj.bias": "model-00002-of-00009.safetensors",
311
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
312
+ "model.layers.3.self_attn.sinks": "model-00002-of-00009.safetensors",
313
+ "model.layers.3.self_attn.v_proj.bias": "model-00002-of-00009.safetensors",
314
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
315
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00009.safetensors",
316
+ "model.layers.4.mlp.experts.down_proj": "model-00002-of-00009.safetensors",
317
+ "model.layers.4.mlp.experts.down_proj_bias": "model-00002-of-00009.safetensors",
318
+ "model.layers.4.mlp.experts.gate_up_proj": "model-00002-of-00009.safetensors",
319
+ "model.layers.4.mlp.experts.gate_up_proj_bias": "model-00002-of-00009.safetensors",
320
+ "model.layers.4.mlp.router.bias": "model-00002-of-00009.safetensors",
321
+ "model.layers.4.mlp.router.weight": "model-00002-of-00009.safetensors",
322
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
323
+ "model.layers.4.self_attn.k_proj.bias": "model-00002-of-00009.safetensors",
324
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
325
+ "model.layers.4.self_attn.o_proj.bias": "model-00002-of-00009.safetensors",
326
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
327
+ "model.layers.4.self_attn.q_proj.bias": "model-00002-of-00009.safetensors",
328
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
329
+ "model.layers.4.self_attn.sinks": "model-00002-of-00009.safetensors",
330
+ "model.layers.4.self_attn.v_proj.bias": "model-00002-of-00009.safetensors",
331
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
332
+ "model.layers.5.input_layernorm.weight": "model-00003-of-00009.safetensors",
333
+ "model.layers.5.mlp.experts.down_proj": "model-00003-of-00009.safetensors",
334
+ "model.layers.5.mlp.experts.down_proj_bias": "model-00003-of-00009.safetensors",
335
+ "model.layers.5.mlp.experts.gate_up_proj": "model-00003-of-00009.safetensors",
336
+ "model.layers.5.mlp.experts.gate_up_proj_bias": "model-00003-of-00009.safetensors",
337
+ "model.layers.5.mlp.router.bias": "model-00002-of-00009.safetensors",
338
+ "model.layers.5.mlp.router.weight": "model-00002-of-00009.safetensors",
339
+ "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
340
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00009.safetensors",
341
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
342
+ "model.layers.5.self_attn.o_proj.bias": "model-00002-of-00009.safetensors",
343
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
344
+ "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00009.safetensors",
345
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
346
+ "model.layers.5.self_attn.sinks": "model-00002-of-00009.safetensors",
347
+ "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00009.safetensors",
348
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
349
+ "model.layers.6.input_layernorm.weight": "model-00003-of-00009.safetensors",
350
+ "model.layers.6.mlp.experts.down_proj": "model-00003-of-00009.safetensors",
351
+ "model.layers.6.mlp.experts.down_proj_bias": "model-00003-of-00009.safetensors",
352
+ "model.layers.6.mlp.experts.gate_up_proj": "model-00003-of-00009.safetensors",
353
+ "model.layers.6.mlp.experts.gate_up_proj_bias": "model-00003-of-00009.safetensors",
354
+ "model.layers.6.mlp.router.bias": "model-00003-of-00009.safetensors",
355
+ "model.layers.6.mlp.router.weight": "model-00003-of-00009.safetensors",
356
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
357
+ "model.layers.6.self_attn.k_proj.bias": "model-00003-of-00009.safetensors",
358
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
359
+ "model.layers.6.self_attn.o_proj.bias": "model-00003-of-00009.safetensors",
360
+ "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
361
+ "model.layers.6.self_attn.q_proj.bias": "model-00003-of-00009.safetensors",
362
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
363
+ "model.layers.6.self_attn.sinks": "model-00003-of-00009.safetensors",
364
+ "model.layers.6.self_attn.v_proj.bias": "model-00003-of-00009.safetensors",
365
+ "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
366
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00009.safetensors",
367
+ "model.layers.7.mlp.experts.down_proj": "model-00003-of-00009.safetensors",
368
+ "model.layers.7.mlp.experts.down_proj_bias": "model-00003-of-00009.safetensors",
369
+ "model.layers.7.mlp.experts.gate_up_proj": "model-00003-of-00009.safetensors",
370
+ "model.layers.7.mlp.experts.gate_up_proj_bias": "model-00003-of-00009.safetensors",
371
+ "model.layers.7.mlp.router.bias": "model-00003-of-00009.safetensors",
372
+ "model.layers.7.mlp.router.weight": "model-00003-of-00009.safetensors",
373
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
374
+ "model.layers.7.self_attn.k_proj.bias": "model-00003-of-00009.safetensors",
375
+ "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
376
+ "model.layers.7.self_attn.o_proj.bias": "model-00003-of-00009.safetensors",
377
+ "model.layers.7.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
378
+ "model.layers.7.self_attn.q_proj.bias": "model-00003-of-00009.safetensors",
379
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
380
+ "model.layers.7.self_attn.sinks": "model-00003-of-00009.safetensors",
381
+ "model.layers.7.self_attn.v_proj.bias": "model-00003-of-00009.safetensors",
382
+ "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
383
+ "model.layers.8.input_layernorm.weight": "model-00004-of-00009.safetensors",
384
+ "model.layers.8.mlp.experts.down_proj": "model-00004-of-00009.safetensors",
385
+ "model.layers.8.mlp.experts.down_proj_bias": "model-00004-of-00009.safetensors",
386
+ "model.layers.8.mlp.experts.gate_up_proj": "model-00004-of-00009.safetensors",
387
+ "model.layers.8.mlp.experts.gate_up_proj_bias": "model-00004-of-00009.safetensors",
388
+ "model.layers.8.mlp.router.bias": "model-00003-of-00009.safetensors",
389
+ "model.layers.8.mlp.router.weight": "model-00003-of-00009.safetensors",
390
+ "model.layers.8.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
391
+ "model.layers.8.self_attn.k_proj.bias": "model-00003-of-00009.safetensors",
392
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
393
+ "model.layers.8.self_attn.o_proj.bias": "model-00003-of-00009.safetensors",
394
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
395
+ "model.layers.8.self_attn.q_proj.bias": "model-00003-of-00009.safetensors",
396
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
397
+ "model.layers.8.self_attn.sinks": "model-00003-of-00009.safetensors",
398
+ "model.layers.8.self_attn.v_proj.bias": "model-00003-of-00009.safetensors",
399
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
400
+ "model.layers.9.input_layernorm.weight": "model-00004-of-00009.safetensors",
401
+ "model.layers.9.mlp.experts.down_proj": "model-00004-of-00009.safetensors",
402
+ "model.layers.9.mlp.experts.down_proj_bias": "model-00004-of-00009.safetensors",
403
+ "model.layers.9.mlp.experts.gate_up_proj": "model-00004-of-00009.safetensors",
404
+ "model.layers.9.mlp.experts.gate_up_proj_bias": "model-00004-of-00009.safetensors",
405
+ "model.layers.9.mlp.router.bias": "model-00004-of-00009.safetensors",
406
+ "model.layers.9.mlp.router.weight": "model-00004-of-00009.safetensors",
407
+ "model.layers.9.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
408
+ "model.layers.9.self_attn.k_proj.bias": "model-00004-of-00009.safetensors",
409
+ "model.layers.9.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
410
+ "model.layers.9.self_attn.o_proj.bias": "model-00004-of-00009.safetensors",
411
+ "model.layers.9.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
412
+ "model.layers.9.self_attn.q_proj.bias": "model-00004-of-00009.safetensors",
413
+ "model.layers.9.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
414
+ "model.layers.9.self_attn.sinks": "model-00004-of-00009.safetensors",
415
+ "model.layers.9.self_attn.v_proj.bias": "model-00004-of-00009.safetensors",
416
+ "model.layers.9.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
417
+ "model.norm.weight": "model-00009-of-00009.safetensors"
418
+ }
419
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|return|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0614fe83cadab421296e664e1f48f4261fa8fef6e03e63bb75c20f38e37d07d3
3
+ size 27868174
tokenizer_config.json ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "199998": {
4
+ "content": "<|startoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "199999": {
12
+ "content": "<|endoftext|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "200000": {
20
+ "content": "<|reserved_200000|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "200001": {
28
+ "content": "<|reserved_200001|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "200002": {
36
+ "content": "<|return|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "200003": {
44
+ "content": "<|constrain|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "200004": {
52
+ "content": "<|reserved_200004|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "200005": {
60
+ "content": "<|channel|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "200006": {
68
+ "content": "<|start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "200007": {
76
+ "content": "<|end|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "200008": {
84
+ "content": "<|message|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "200009": {
92
+ "content": "<|reserved_200009|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "200010": {
100
+ "content": "<|reserved_200010|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "200011": {
108
+ "content": "<|reserved_200011|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "200012": {
116
+ "content": "<|call|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "200013": {
124
+ "content": "<|reserved_200013|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "200014": {
132
+ "content": "<|reserved_200014|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "200015": {
140
+ "content": "<|reserved_200015|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "200016": {
148
+ "content": "<|reserved_200016|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "200017": {
156
+ "content": "<|reserved_200017|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "200018": {
164
+ "content": "<|endofprompt|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ }
171
+ },
172
+ "bos_token": "<|startoftext|>",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "<|return|>",
175
+ "extra_special_tokens": {},
176
+ "model_input_names": [
177
+ "input_ids",
178
+ "attention_mask"
179
+ ],
180
+ "model_max_length": 1000000000000000019884624838656,
181
+ "pad_token": "<|endoftext|>",
182
+ "tokenizer_class": "PreTrainedTokenizerFast"
183
+ }