from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments from datasets import load_dataset # Load a pre-trained tokenizer and model model_name = "distilbert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) # Load a small dataset for fine-tuning (e.g., SST2 for sentiment analysis) dataset = load_dataset("sst2") def tokenize_function(examples): return tokenizer(examples["sentence"], padding="max_length", truncation=True) # Tokenize the dataset tokenized_datasets = dataset.map(tokenize_function, batched=True) # Define training arguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", logging_dir="./logs", num_train_epochs=1, per_device_train_batch_size=8, per_device_eval_batch_size=8, ) # Create Trainer instance trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"].shuffle(seed=42).select(range(1000)), # Use a small subset for training eval_dataset=tokenized_datasets["validation"].select(range(100)), ) # Train the model trainer.train() # Save the trained model model.save_pretrained("my-small-model") tokenizer.save_pretrained("my-small-model")