Spaces:
Runtime error
Runtime error
| # YOLOv5 🚀 by Ultralytics, GPL-3.0 license | |
| """ | |
| Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc. | |
| Usage - sources: | |
| $ python detect.py --weights yolov5s.pt --source 0 # webcam | |
| img.jpg # image | |
| vid.mp4 # video | |
| screen # screenshot | |
| path/ # directory | |
| list.txt # list of images | |
| list.streams # list of streams | |
| 'path/*.jpg' # glob | |
| 'https://youtu.be/Zgi9g1ksQHc' # YouTube | |
| 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream | |
| Usage - formats: | |
| $ python detect.py --weights yolov5s.pt # PyTorch | |
| yolov5s.torchscript # TorchScript | |
| yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn | |
| yolov5s_openvino_model # OpenVINO | |
| yolov5s.engine # TensorRT | |
| yolov5s.mlmodel # CoreML (macOS-only) | |
| yolov5s_saved_model # TensorFlow SavedModel | |
| yolov5s.pb # TensorFlow GraphDef | |
| yolov5s.tflite # TensorFlow Lite | |
| yolov5s_edgetpu.tflite # TensorFlow Edge TPU | |
| yolov5s_paddle_model # PaddlePaddle | |
| """ | |
| import argparse | |
| import os | |
| import platform | |
| import sys | |
| from pathlib import Path | |
| import torch | |
| FILE = Path(__file__).resolve() | |
| ROOT = FILE.parents[0] # YOLOv5 root directory | |
| if str(ROOT) not in sys.path: | |
| sys.path.append(str(ROOT)) # add ROOT to PATH | |
| ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
| from models.common import DetectMultiBackend | |
| from utils.dataloaders import ( | |
| IMG_FORMATS, | |
| VID_FORMATS, | |
| LoadImages, | |
| LoadScreenshots, | |
| LoadStreams, | |
| ) | |
| from utils.general import ( | |
| LOGGER, | |
| Profile, | |
| check_file, | |
| check_img_size, | |
| check_imshow, | |
| check_requirements, | |
| colorstr, | |
| cv2, | |
| increment_path, | |
| non_max_suppression, | |
| print_args, | |
| scale_boxes, | |
| strip_optimizer, | |
| xyxy2xywh, | |
| ) | |
| from utils.plots import Annotator, colors, save_one_box | |
| from utils.torch_utils import select_device, smart_inference_mode | |
| def run( | |
| weights=ROOT / "yolov5s.pt", # model path or triton URL | |
| source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam) | |
| data=ROOT / "data/coco128.yaml", # dataset.yaml path | |
| imgsz=(640, 640), # inference size (height, width) | |
| conf_thres=0.25, # confidence threshold | |
| iou_thres=0.45, # NMS IOU threshold | |
| max_det=1000, # maximum detections per image | |
| device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
| view_img=False, # show results | |
| save_txt=False, # save results to *.txt | |
| save_conf=False, # save confidences in --save-txt labels | |
| save_crop=False, # save cropped prediction boxes | |
| nosave=False, # do not save images/videos | |
| classes=None, # filter by class: --class 0, or --class 0 2 3 | |
| agnostic_nms=False, # class-agnostic NMS | |
| augment=False, # augmented inference | |
| visualize=False, # visualize features | |
| update=False, # update all models | |
| project=ROOT / "runs/detect", # save results to project/name | |
| name="exp", # save results to project/name | |
| exist_ok=False, # existing project/name ok, do not increment | |
| line_thickness=3, # bounding box thickness (pixels) | |
| hide_labels=False, # hide labels | |
| hide_conf=False, # hide confidences | |
| half=False, # use FP16 half-precision inference | |
| dnn=False, # use OpenCV DNN for ONNX inference | |
| vid_stride=1, # video frame-rate stride | |
| ): | |
| source = str(source) | |
| save_img = not nosave and not source.endswith( | |
| ".txt" | |
| ) # save inference images | |
| is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) | |
| is_url = source.lower().startswith( | |
| ("rtsp://", "rtmp://", "http://", "https://") | |
| ) | |
| webcam = ( | |
| source.isnumeric() | |
| or source.endswith(".streams") | |
| or (is_url and not is_file) | |
| ) | |
| screenshot = source.lower().startswith("screen") | |
| if is_url and is_file: | |
| source = check_file(source) # download | |
| # Directories | |
| save_dir = increment_path( | |
| Path(project) / name, exist_ok=exist_ok | |
| ) # increment run | |
| (save_dir / "labels" if save_txt else save_dir).mkdir( | |
| parents=True, exist_ok=True | |
| ) # make dir | |
| # Load model | |
| device = select_device(device) | |
| model = DetectMultiBackend( | |
| weights, device=device, dnn=dnn, data=data, fp16=half | |
| ) | |
| stride, names, pt = model.stride, model.names, model.pt | |
| imgsz = check_img_size(imgsz, s=stride) # check image size | |
| # Dataloader | |
| bs = 1 # batch_size | |
| if webcam: | |
| view_img = check_imshow(warn=True) | |
| dataset = LoadStreams( | |
| source, | |
| img_size=imgsz, | |
| stride=stride, | |
| auto=pt, | |
| vid_stride=vid_stride, | |
| ) | |
| bs = len(dataset) | |
| elif screenshot: | |
| dataset = LoadScreenshots( | |
| source, img_size=imgsz, stride=stride, auto=pt | |
| ) | |
| else: | |
| dataset = LoadImages( | |
| source, | |
| img_size=imgsz, | |
| stride=stride, | |
| auto=pt, | |
| vid_stride=vid_stride, | |
| ) | |
| vid_path, vid_writer = [None] * bs, [None] * bs | |
| # Run inference | |
| model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup | |
| seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) | |
| for path, im, im0s, vid_cap, s in dataset: | |
| with dt[0]: | |
| im = torch.from_numpy(im).to(model.device) | |
| im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 | |
| im /= 255 # 0 - 255 to 0.0 - 1.0 | |
| if len(im.shape) == 3: | |
| im = im[None] # expand for batch dim | |
| # Inference | |
| with dt[1]: | |
| visualize = ( | |
| increment_path(save_dir / Path(path).stem, mkdir=True) | |
| if visualize | |
| else False | |
| ) | |
| pred = model(im, augment=augment, visualize=visualize) | |
| # NMS | |
| with dt[2]: | |
| pred = non_max_suppression( | |
| pred, | |
| conf_thres, | |
| iou_thres, | |
| classes, | |
| agnostic_nms, | |
| max_det=max_det, | |
| ) | |
| # Second-stage classifier (optional) | |
| # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) | |
| # Process predictions | |
| for i, det in enumerate(pred): # per image | |
| seen += 1 | |
| if webcam: # batch_size >= 1 | |
| p, im0, frame = path[i], im0s[i].copy(), dataset.count | |
| s += f"{i}: " | |
| else: | |
| p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0) | |
| p = Path(p) # to Path | |
| save_path = str(save_dir / p.name) # im.jpg | |
| txt_path = str(save_dir / "labels" / p.stem) + ( | |
| "" if dataset.mode == "image" else f"_{frame}" | |
| ) # im.txt | |
| s += "%gx%g " % im.shape[2:] # print string | |
| gn = torch.tensor(im0.shape)[ | |
| [1, 0, 1, 0] | |
| ] # normalization gain whwh | |
| imc = im0.copy() if save_crop else im0 # for save_crop | |
| annotator = Annotator( | |
| im0, line_width=line_thickness, example=str(names) | |
| ) | |
| if len(det): | |
| # Rescale boxes from img_size to im0 size | |
| det[:, :4] = scale_boxes( | |
| im.shape[2:], det[:, :4], im0.shape | |
| ).round() | |
| # Print results | |
| for c in det[:, 5].unique(): | |
| n = (det[:, 5] == c).sum() # detections per class | |
| s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string | |
| # Write results | |
| for *xyxy, conf, cls in reversed(det): | |
| if save_txt: # Write to file | |
| xywh = ( | |
| (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn) | |
| .view(-1) | |
| .tolist() | |
| ) # normalized xywh | |
| line = ( | |
| (cls, *xywh, conf) if save_conf else (cls, *xywh) | |
| ) # label format | |
| with open(f"{txt_path}.txt", "a") as f: | |
| f.write(("%g " * len(line)).rstrip() % line + "\n") | |
| if save_img or save_crop or view_img: # Add bbox to image | |
| c = int(cls) # integer class | |
| label = ( | |
| None | |
| if hide_labels | |
| else ( | |
| names[c] | |
| if hide_conf | |
| else f"{names[c]} {conf:.2f}" | |
| ) | |
| ) | |
| annotator.box_label(xyxy, label, color=colors(c, True)) | |
| if save_crop: | |
| save_one_box( | |
| xyxy, | |
| imc, | |
| file=save_dir | |
| / "crops" | |
| / names[c] | |
| / f"{p.stem}.jpg", | |
| BGR=True, | |
| ) | |
| # Stream results | |
| im0 = annotator.result() | |
| if view_img: | |
| if platform.system() == "Linux" and p not in windows: | |
| windows.append(p) | |
| cv2.namedWindow( | |
| str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO | |
| ) # allow window resize (Linux) | |
| cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) | |
| cv2.imshow(str(p), im0) | |
| cv2.waitKey(1) # 1 millisecond | |
| # Save results (image with detections) | |
| if save_img: | |
| if dataset.mode == "image": | |
| cv2.imwrite(save_path, im0) | |
| else: # 'video' or 'stream' | |
| if vid_path[i] != save_path: # new video | |
| vid_path[i] = save_path | |
| if isinstance(vid_writer[i], cv2.VideoWriter): | |
| vid_writer[ | |
| i | |
| ].release() # release previous video writer | |
| if vid_cap: # video | |
| fps = vid_cap.get(cv2.CAP_PROP_FPS) | |
| w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| else: # stream | |
| fps, w, h = 30, im0.shape[1], im0.shape[0] | |
| save_path = str( | |
| Path(save_path).with_suffix(".mp4") | |
| ) # force *.mp4 suffix on results videos | |
| vid_writer[i] = cv2.VideoWriter( | |
| save_path, | |
| cv2.VideoWriter_fourcc(*"mp4v"), | |
| fps, | |
| (w, h), | |
| ) | |
| vid_writer[i].write(im0) | |
| # Print time (inference-only) | |
| LOGGER.info( | |
| f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms" | |
| ) | |
| # Print results | |
| t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image | |
| LOGGER.info( | |
| f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" | |
| % t | |
| ) | |
| if save_txt or save_img: | |
| s = ( | |
| f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" | |
| if save_txt | |
| else "" | |
| ) | |
| LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") | |
| if update: | |
| strip_optimizer( | |
| weights[0] | |
| ) # update model (to fix SourceChangeWarning) | |
| def parse_opt(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--weights", | |
| nargs="+", | |
| type=str, | |
| default=ROOT / "yolov5s.pt", | |
| help="model path or triton URL", | |
| ) | |
| parser.add_argument( | |
| "--source", | |
| type=str, | |
| default=ROOT / "data/images", | |
| help="file/dir/URL/glob/screen/0(webcam)", | |
| ) | |
| parser.add_argument( | |
| "--data", | |
| type=str, | |
| default=ROOT / "data/coco128.yaml", | |
| help="(optional) dataset.yaml path", | |
| ) | |
| parser.add_argument( | |
| "--imgsz", | |
| "--img", | |
| "--img-size", | |
| nargs="+", | |
| type=int, | |
| default=[640], | |
| help="inference size h,w", | |
| ) | |
| parser.add_argument( | |
| "--conf-thres", type=float, default=0.25, help="confidence threshold" | |
| ) | |
| parser.add_argument( | |
| "--iou-thres", type=float, default=0.45, help="NMS IoU threshold" | |
| ) | |
| parser.add_argument( | |
| "--max-det", | |
| type=int, | |
| default=1000, | |
| help="maximum detections per image", | |
| ) | |
| parser.add_argument( | |
| "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" | |
| ) | |
| parser.add_argument("--view-img", action="store_true", help="show results") | |
| parser.add_argument( | |
| "--save-txt", action="store_true", help="save results to *.txt" | |
| ) | |
| parser.add_argument( | |
| "--save-conf", | |
| action="store_true", | |
| help="save confidences in --save-txt labels", | |
| ) | |
| parser.add_argument( | |
| "--save-crop", | |
| action="store_true", | |
| help="save cropped prediction boxes", | |
| ) | |
| parser.add_argument( | |
| "--nosave", action="store_true", help="do not save images/videos" | |
| ) | |
| parser.add_argument( | |
| "--classes", | |
| nargs="+", | |
| type=int, | |
| help="filter by class: --classes 0, or --classes 0 2 3", | |
| ) | |
| parser.add_argument( | |
| "--agnostic-nms", action="store_true", help="class-agnostic NMS" | |
| ) | |
| parser.add_argument( | |
| "--augment", action="store_true", help="augmented inference" | |
| ) | |
| parser.add_argument( | |
| "--visualize", action="store_true", help="visualize features" | |
| ) | |
| parser.add_argument( | |
| "--update", action="store_true", help="update all models" | |
| ) | |
| parser.add_argument( | |
| "--project", | |
| default=ROOT / "runs/detect", | |
| help="save results to project/name", | |
| ) | |
| parser.add_argument( | |
| "--name", default="exp", help="save results to project/name" | |
| ) | |
| parser.add_argument( | |
| "--exist-ok", | |
| action="store_true", | |
| help="existing project/name ok, do not increment", | |
| ) | |
| parser.add_argument( | |
| "--line-thickness", | |
| default=3, | |
| type=int, | |
| help="bounding box thickness (pixels)", | |
| ) | |
| parser.add_argument( | |
| "--hide-labels", default=False, action="store_true", help="hide labels" | |
| ) | |
| parser.add_argument( | |
| "--hide-conf", | |
| default=False, | |
| action="store_true", | |
| help="hide confidences", | |
| ) | |
| parser.add_argument( | |
| "--half", action="store_true", help="use FP16 half-precision inference" | |
| ) | |
| parser.add_argument( | |
| "--dnn", action="store_true", help="use OpenCV DNN for ONNX inference" | |
| ) | |
| parser.add_argument( | |
| "--vid-stride", type=int, default=1, help="video frame-rate stride" | |
| ) | |
| opt = parser.parse_args() | |
| opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand | |
| print_args(vars(opt)) | |
| return opt | |
| def main(opt): | |
| check_requirements(exclude=("tensorboard", "thop")) | |
| run(**vars(opt)) | |
| if __name__ == "__main__": | |
| opt = parse_opt() | |
| main(opt) | |