Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,797 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import necessary libraries
|
| 2 |
+
import os # Interacting with the operating system (reading/writing files)
|
| 3 |
+
import chromadb # High-performance vector database for storing/querying dense vectors
|
| 4 |
+
from dotenv import load_dotenv # Loading environment variables from a .env file
|
| 5 |
+
import json # Parsing and handling JSON data
|
| 6 |
+
|
| 7 |
+
# LangChain imports
|
| 8 |
+
from langchain_core.documents import Document # Document data structures
|
| 9 |
+
from langchain_core.runnables import RunnablePassthrough # LangChain core library for running pipelines
|
| 10 |
+
from langchain_core.output_parsers import StrOutputParser # String output parser
|
| 11 |
+
from langchain.prompts import ChatPromptTemplate # Template for chat prompts
|
| 12 |
+
from langchain.chains.query_constructor.base import AttributeInfo # Base classes for query construction
|
| 13 |
+
from langchain.retrievers.self_query.base import SelfQueryRetriever # Base classes for self-querying retrievers
|
| 14 |
+
from langchain.retrievers.document_compressors import LLMChainExtractor, CrossEncoderReranker # Document compressors
|
| 15 |
+
from langchain.retrievers import ContextualCompressionRetriever # Contextual compression retrievers
|
| 16 |
+
|
| 17 |
+
# LangChain community & experimental imports
|
| 18 |
+
from langchain_community.vectorstores import Chroma # Implementations of vector stores like Chroma
|
| 19 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader, PyPDFLoader # Document loaders for PDFs
|
| 20 |
+
from langchain_community.cross_encoders import HuggingFaceCrossEncoder # Cross-encoders from HuggingFace
|
| 21 |
+
from langchain_experimental.text_splitter import SemanticChunker # Experimental text splitting methods
|
| 22 |
+
from langchain.text_splitter import (
|
| 23 |
+
CharacterTextSplitter, # Splitting text by characters
|
| 24 |
+
RecursiveCharacterTextSplitter # Recursive splitting of text by characters
|
| 25 |
+
)
|
| 26 |
+
from langchain_core.tools import tool
|
| 27 |
+
from langchain.agents import create_tool_calling_agent, AgentExecutor
|
| 28 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 29 |
+
|
| 30 |
+
# LangChain OpenAI imports
|
| 31 |
+
from langchain_openai import AzureOpenAIEmbeddings, AzureChatOpenAI # OpenAI embeddings and models
|
| 32 |
+
from langchain.embeddings.openai import OpenAIEmbeddings # OpenAI embeddings for text vectors
|
| 33 |
+
|
| 34 |
+
# LlamaParse & LlamaIndex imports
|
| 35 |
+
from llama_parse import LlamaParse # Document parsing library
|
| 36 |
+
from llama_index.core import Settings, SimpleDirectoryReader # Core functionalities of the LlamaIndex
|
| 37 |
+
|
| 38 |
+
# LangGraph import
|
| 39 |
+
from langgraph.graph import StateGraph, END, START # State graph for managing states in LangChain
|
| 40 |
+
|
| 41 |
+
# Pydantic import
|
| 42 |
+
from pydantic import BaseModel # Pydantic for data validation
|
| 43 |
+
|
| 44 |
+
# Typing imports
|
| 45 |
+
from typing import Dict, List, Tuple, Any, TypedDict # Python typing for function annotations
|
| 46 |
+
|
| 47 |
+
# Other utilities
|
| 48 |
+
import numpy as np # Numpy for numerical operations
|
| 49 |
+
from groq import Groq
|
| 50 |
+
from mem0 import MemoryClient
|
| 51 |
+
import streamlit as st
|
| 52 |
+
from datetime import datetime
|
| 53 |
+
|
| 54 |
+
#====================================SETUP=====================================#
|
| 55 |
+
# Fetch secrets from Hugging Face Spaces
|
| 56 |
+
api_key = os.environ['AZURE_OPENAI_KEY']
|
| 57 |
+
endpoint = os.environ['AZURE_OPENAI_ENDPOINT']
|
| 58 |
+
model_name = os.environ['CHATGPT_MODEL']
|
| 59 |
+
api_version = os.environ['AZURE_OPENAI_APIVERSION']
|
| 60 |
+
|
| 61 |
+
emb_key = os.environ['EMB_MODEL_KEY']
|
| 62 |
+
emb_endpoint = os.environ['EMB_DEPLOYMENT']
|
| 63 |
+
llamaparse_api_key = os.environ['LLAMA_KEY']
|
| 64 |
+
|
| 65 |
+
groq_api_key = os.environ['GROQ_API_KEY']
|
| 66 |
+
MEM0_api_key = os.environ['MEM0_API_KEY']
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# Initialize the Llama Guard client with the API key
|
| 70 |
+
llama_guard_client = Groq(api_key=groq_api_key) # Complete the code to provide the API key for the Llama Guard client
|
| 71 |
+
|
| 72 |
+
# Initialize the OpenAI embedding function for Chroma
|
| 73 |
+
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
|
| 74 |
+
api_base=endpoint, # Complete the code to define the API base endpoint
|
| 75 |
+
api_key=api_key, # Complete the code to define the API key
|
| 76 |
+
api_type='azure', # This is a fixed value and does not need modification
|
| 77 |
+
api_version=api_version, # This is a fixed value and does not need modification
|
| 78 |
+
model_name='text-embedding-ada-002' # This is a fixed value and does not need modification
|
| 79 |
+
)
|
| 80 |
+
# This initializes the OpenAI embedding function for the Chroma vectorstore, using the provided Azure endpoint and API key.
|
| 81 |
+
|
| 82 |
+
# Initialize the Azure OpenAI Embeddings
|
| 83 |
+
embedding_model = AzureOpenAIEmbeddings(
|
| 84 |
+
azure_endpoint=emb_endpoint, # Complete the code to define the Azure endpoint
|
| 85 |
+
api_key=emb_key, # Complete the code to define the API key
|
| 86 |
+
api_version='2023-05-15', # This is a fixed value and does not need modification
|
| 87 |
+
model='text-embedding-ada-002'
|
| 88 |
+
) # Complete the code to define the model name
|
| 89 |
+
# This initializes the Azure OpenAI embeddings model using the specified endpoint, API key, and model name.
|
| 90 |
+
|
| 91 |
+
# Initialize the Azure Chat OpenAI model
|
| 92 |
+
llm = AzureChatOpenAI(
|
| 93 |
+
azure_endpoint=endpoint, # Complete the code to define the Azure endpoint
|
| 94 |
+
api_key=api_key, # Complete the code to provide the API key
|
| 95 |
+
api_version=api_version, # This is a fixed value and does not need modification
|
| 96 |
+
azure_deployment=model_name, # Complete the code to define the Azure deployment name
|
| 97 |
+
temperature=0 # Complete the code to set the temperature for response variability
|
| 98 |
+
)
|
| 99 |
+
# This initializes the Azure Chat OpenAI model with the provided endpoint, API key, deployment name, and a temperature setting of 0 (to control response variability).
|
| 100 |
+
|
| 101 |
+
# set the LLM and embedding model in the LlamaIndex settings.
|
| 102 |
+
Settings.llm = llm # Complete the code to define the LLM model
|
| 103 |
+
Settings.embedding = embedding_model # Complete the code to define the embedding model
|
| 104 |
+
|
| 105 |
+
#================================Creating Langgraph agent======================#
|
| 106 |
+
|
| 107 |
+
class AgentState(TypedDict):
|
| 108 |
+
query: str # The current user query
|
| 109 |
+
expanded_query: str # The expanded version of the user query
|
| 110 |
+
context: List[Dict[str, Any]] # Retrieved documents (content and metadata)
|
| 111 |
+
response: str # The generated response to the user query
|
| 112 |
+
precision_score: float # The precision score of the response
|
| 113 |
+
groundedness_score: float # The groundedness score of the response
|
| 114 |
+
groundedness_loop_count: int # Counter for groundedness refinement loops
|
| 115 |
+
precision_loop_count: int # Counter for precision refinement loops
|
| 116 |
+
feedback: str
|
| 117 |
+
query_feedback: str
|
| 118 |
+
groundedness_check: bool
|
| 119 |
+
loop_max_iter: int
|
| 120 |
+
|
| 121 |
+
def expand_query(state):
|
| 122 |
+
"""
|
| 123 |
+
Expands the user query to improve retrieval of nutrition disorder-related information.
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
state (Dict): The current state of the workflow, containing the user query.
|
| 127 |
+
|
| 128 |
+
Returns:
|
| 129 |
+
Dict: The updated state with the expanded query.
|
| 130 |
+
"""
|
| 131 |
+
|
| 132 |
+
system_message = """
|
| 133 |
+
You are a helpful and harmless AI assistant. Your task is to expand the user's query related to nutrition disorders to improve information retrieval.
|
| 134 |
+
If there are multiple common ways of phrasing a user's query or common synonyms for key words in the question, make sure to return multiple versions
|
| 135 |
+
of the query with the different phrasings.
|
| 136 |
+
|
| 137 |
+
If the query has multiple parts, split them into separate simpler queries. This is the only case where you can generate more than 3 queries.
|
| 138 |
+
If there are acronyms or words you are not familiar with, do not try to rephrase them.
|
| 139 |
+
|
| 140 |
+
Return only 3 versions of the question as a list.
|
| 141 |
+
Generate only a list of questions. Do not mention anything before or after the list.
|
| 142 |
+
|
| 143 |
+
**Guidelines for Query Expansion:**
|
| 144 |
+
|
| 145 |
+
1. **Retain Original Intent:** Ensure the expanded query accurately reflects the user's original information need. Avoid introducing new topics or shifting the focus.
|
| 146 |
+
2. **Add Relevant Keywords:** Introduce keywords and phrases commonly associated with nutritional disorders that are relevant to the user's query. This might include symptoms, causes, risk factors, diagnostic terms, treatment approaches, or related conditions.
|
| 147 |
+
3. **Consider Query Feedback:** If query feedback is available, incorporate it to refine the query further. Address any ambiguities or missing information highlighted in the feedback.
|
| 148 |
+
4. **Conciseness and Clarity:** Keep the expanded query concise and easy to understand. Avoid overly complex or lengthy phrases.
|
| 149 |
+
5. **Focus on Nutritional Aspects:** The expanded query should prioritize aspects related to nutrition, diet, and dietary habits.
|
| 150 |
+
6. **Medical Accuracy:** While not a medical professional, strive for medical accuracy by using terminology and concepts consistent with established nutritional science.
|
| 151 |
+
7. **Output format:** Return only 3 versions of the expanded queries as a list and do not mention anything before or after the list.
|
| 152 |
+
|
| 153 |
+
**Example:**
|
| 154 |
+
|
| 155 |
+
**User Query:** "What are the effects of vitamin D deficiency?"
|
| 156 |
+
**Query Feedback:** "Focus on bone health."
|
| 157 |
+
**Expanded Query:** "[
|
| 158 |
+
'How does vitamin D deficiency affect bone health in children, adults, and the elderly?',
|
| 159 |
+
'What are the long-term effects of chronic vitamin D deficiency on bone density and fracture risk?',
|
| 160 |
+
'How does vitamin D deficiency contribute to osteoporosis, rickets, and other bone-related disorders?'
|
| 161 |
+
]"
|
| 162 |
+
|
| 163 |
+
**Remember:** Your goal is to create an expanded query that helps retrieve the most relevant and accurate information about nutrition disorders from a knowledge base.
|
| 164 |
+
"""
|
| 165 |
+
|
| 166 |
+
expand_prompt = ChatPromptTemplate.from_messages([
|
| 167 |
+
("system", system_message),
|
| 168 |
+
("user", "Expand this query: {query} using the feedback: {query_feedback}")
|
| 169 |
+
|
| 170 |
+
])
|
| 171 |
+
|
| 172 |
+
chain = expand_prompt | llm | StrOutputParser()
|
| 173 |
+
expanded_query = chain.invoke({"query": state['query'], "query_feedback":state["query_feedback"]})
|
| 174 |
+
print("expanded_query", expanded_query)
|
| 175 |
+
state["expanded_query"] = expanded_query
|
| 176 |
+
return state
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
# Initialize the Chroma vector store for retrieving documents
|
| 180 |
+
vector_store = Chroma(
|
| 181 |
+
collection_name="nutritional_hypotheticals",
|
| 182 |
+
persist_directory="./nutritional_db",
|
| 183 |
+
embedding_function=embedding_model
|
| 184 |
+
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
# Create a retriever from the vector store
|
| 188 |
+
retriever = vector_store.as_retriever(
|
| 189 |
+
search_type='similarity',
|
| 190 |
+
search_kwargs={'k': 3}
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
def retrieve_context(state):
|
| 194 |
+
"""
|
| 195 |
+
Retrieves context from the vector store using the expanded or original query.
|
| 196 |
+
|
| 197 |
+
Args:
|
| 198 |
+
state (Dict): The current state of the workflow, containing the query and expanded query.
|
| 199 |
+
|
| 200 |
+
Returns:
|
| 201 |
+
Dict: The updated state with the retrieved context.
|
| 202 |
+
"""
|
| 203 |
+
print("---------retrieve_context---------")
|
| 204 |
+
query = state['expanded_query'] # Complete the code to define the key for the expanded query
|
| 205 |
+
#print("Query used for retrieval:", query) # Debugging: Print the query
|
| 206 |
+
|
| 207 |
+
# Retrieve documents from the vector store
|
| 208 |
+
docs = retriever.invoke(query)
|
| 209 |
+
print("Retrieved documents:", docs) # Debugging: Print the raw docs object
|
| 210 |
+
|
| 211 |
+
# Extract both page_content and metadata from each document
|
| 212 |
+
context= [
|
| 213 |
+
{
|
| 214 |
+
"content": doc.page_content, # The actual content of the document
|
| 215 |
+
"metadata": doc.metadata # The metadata (e.g., source, page number, etc.)
|
| 216 |
+
}
|
| 217 |
+
for doc in docs
|
| 218 |
+
]
|
| 219 |
+
state['context'] = context # Complete the code to define the key for storing the context
|
| 220 |
+
print("Extracted context with metadata:", context) # Debugging: Print the extracted context
|
| 221 |
+
#print(f"Groundedness loop count: {state['groundedness_loop_count']}")
|
| 222 |
+
return state
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def craft_response(state: Dict) -> Dict:
|
| 226 |
+
"""
|
| 227 |
+
Generates a response using the retrieved context, focusing on nutrition disorders.
|
| 228 |
+
|
| 229 |
+
Args:
|
| 230 |
+
state (Dict): The current state of the workflow, containing the query and retrieved context.
|
| 231 |
+
|
| 232 |
+
Returns:
|
| 233 |
+
Dict: The updated state with the generated response.
|
| 234 |
+
"""
|
| 235 |
+
|
| 236 |
+
print("---------craft_response---------")
|
| 237 |
+
system_message = """
|
| 238 |
+
You are an helpful AI assisstant specializing in nutrition disorders,vitamin and mineral deficiency.
|
| 239 |
+
Your job is to answer user query based on the provided Context
|
| 240 |
+
Use the following guidelines:
|
| 241 |
+
- If you're unsure about something, ask for clarification
|
| 242 |
+
- Only answer the question based on the provided Context
|
| 243 |
+
- Use the feedback if provided to refine your answer
|
| 244 |
+
"""
|
| 245 |
+
#- If you do not know the answer based on the provided Context you must respond with "I do not have the answer based on my context."
|
| 246 |
+
|
| 247 |
+
response_prompt = ChatPromptTemplate.from_messages([
|
| 248 |
+
("system", system_message),
|
| 249 |
+
("user", "Query: {query}\nContext: {context}\n\nfeedback: {feedback}")
|
| 250 |
+
])
|
| 251 |
+
|
| 252 |
+
chain = response_prompt | llm
|
| 253 |
+
response = chain.invoke({
|
| 254 |
+
"query": state['query'],
|
| 255 |
+
"context": "\n".join([doc["content"] for doc in state['context']]),
|
| 256 |
+
"feedback": state['feedback'] # add feedback to the prompt
|
| 257 |
+
})
|
| 258 |
+
state['response'] = response
|
| 259 |
+
print("intermediate response: ", response)
|
| 260 |
+
|
| 261 |
+
return state
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def score_groundedness(state: Dict) -> Dict:
|
| 265 |
+
"""
|
| 266 |
+
Checks whether the response is grounded in the retrieved context.
|
| 267 |
+
|
| 268 |
+
Args:
|
| 269 |
+
state (Dict): The current state of the workflow, containing the response and context.
|
| 270 |
+
|
| 271 |
+
Returns:
|
| 272 |
+
Dict: The updated state with the groundedness score.
|
| 273 |
+
"""
|
| 274 |
+
print("---------check_groundedness---------")
|
| 275 |
+
system_message = '''
|
| 276 |
+
You are an AI assistant tasked with evaluating the groundedness of responses based on the provided context.
|
| 277 |
+
Your goal is to determine if the response aligns with and is supported by the given context.
|
| 278 |
+
|
| 279 |
+
Guidelines for scoring:
|
| 280 |
+
Give the response a score of one decimal point between 0.0 and 1.0 based on the following criteria:
|
| 281 |
+
|
| 282 |
+
- 1.0 **: The response is entirely supported by the context.
|
| 283 |
+
- 0.0 **: The response is entirely unsupported by the context, or response no support from the context.
|
| 284 |
+
|
| 285 |
+
Evaluate the given response against the provided context and return a **groundedness_score** based on the above criteria.
|
| 286 |
+
Stricly just return the groundedness_score and do not explain your response.
|
| 287 |
+
'''
|
| 288 |
+
|
| 289 |
+
groundedness_prompt = ChatPromptTemplate.from_messages([
|
| 290 |
+
("system", system_message),
|
| 291 |
+
("user", "Context: {context}\nResponse: {response}\n\nGroundedness score:")
|
| 292 |
+
])
|
| 293 |
+
|
| 294 |
+
chain = groundedness_prompt | llm | StrOutputParser()
|
| 295 |
+
groundedness_score = float(chain.invoke({
|
| 296 |
+
"context": "\n".join([doc["content"] for doc in state['context']]),
|
| 297 |
+
"response": state['response'] # Complete the code to define the response
|
| 298 |
+
}))
|
| 299 |
+
print("groundedness_score: ", groundedness_score)
|
| 300 |
+
state['groundedness_loop_count'] += 1
|
| 301 |
+
print("#########Groundedness Incremented###########")
|
| 302 |
+
state['groundedness_score'] = groundedness_score
|
| 303 |
+
|
| 304 |
+
return state
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def check_precision(state: Dict) -> Dict:
|
| 308 |
+
"""
|
| 309 |
+
Checks whether the response precisely addresses the user’s query.
|
| 310 |
+
|
| 311 |
+
Args:
|
| 312 |
+
state (Dict): The current state of the workflow, containing the query and response.
|
| 313 |
+
|
| 314 |
+
Returns:
|
| 315 |
+
Dict: The updated state with the precision score.
|
| 316 |
+
"""
|
| 317 |
+
print("---------check_precision---------")
|
| 318 |
+
system_message ="""
|
| 319 |
+
You are an AI assistant tasked with evaluating the precision of response based on the user’s query.
|
| 320 |
+
Your goal is to determine if the precisely addresses the user’s query.
|
| 321 |
+
|
| 322 |
+
Given user's query and response, verify if the response precisely addresses the user query.
|
| 323 |
+
|
| 324 |
+
Guidelines for scoring:
|
| 325 |
+
Give the response a score of one decimal point between 0.0 and 1.0 based on the following criteria:
|
| 326 |
+
|
| 327 |
+
- 1.0 **: The response is precisely addressing the user's query.
|
| 328 |
+
- 0.0 **: The response, by no means, address the user's query.
|
| 329 |
+
|
| 330 |
+
Evaluate the given response against the user's query and return a **precision_score** based on the above criteria.
|
| 331 |
+
Stricly just return the precision_score and do not explain your response.
|
| 332 |
+
"""
|
| 333 |
+
|
| 334 |
+
precision_prompt = ChatPromptTemplate.from_messages([
|
| 335 |
+
("system", system_message),
|
| 336 |
+
("user", "Query: {query}\nResponse: {response}\n\nPrecision score:")
|
| 337 |
+
])
|
| 338 |
+
|
| 339 |
+
chain = precision_prompt | llm | StrOutputParser() # Complete the code to define the chain of processing
|
| 340 |
+
precision_score = float(chain.invoke({
|
| 341 |
+
"query": state['query'],
|
| 342 |
+
"response":state['response'] # Complete the code to access the response from the state
|
| 343 |
+
}))
|
| 344 |
+
state['precision_score'] = precision_score
|
| 345 |
+
print("precision_score:", precision_score)
|
| 346 |
+
state['precision_loop_count'] +=1
|
| 347 |
+
print("#########Precision Incremented###########")
|
| 348 |
+
return state
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def refine_response(state: Dict) -> Dict:
|
| 353 |
+
"""
|
| 354 |
+
Suggests improvements for the generated response.
|
| 355 |
+
|
| 356 |
+
Args:
|
| 357 |
+
state (Dict): The current state of the workflow, containing the query and response.
|
| 358 |
+
|
| 359 |
+
Returns:
|
| 360 |
+
Dict: The updated state with response refinement suggestions.
|
| 361 |
+
"""
|
| 362 |
+
print("---------refine_response---------")
|
| 363 |
+
|
| 364 |
+
system_message = '''
|
| 365 |
+
Given following query and response what improvements can be made to enhance accuracy and completeness of the generated response?
|
| 366 |
+
'''
|
| 367 |
+
|
| 368 |
+
refine_response_prompt = ChatPromptTemplate.from_messages([
|
| 369 |
+
("system", system_message),
|
| 370 |
+
("user", "Query: {query}\nResponse: {response}\n\n"
|
| 371 |
+
"What improvements can be made to enhance accuracy and completeness?")
|
| 372 |
+
])
|
| 373 |
+
|
| 374 |
+
chain = refine_response_prompt | llm| StrOutputParser()
|
| 375 |
+
|
| 376 |
+
# Store response suggestions in a structured format
|
| 377 |
+
feedback = f"Previous Response: {state['response']}\nSuggestions: {chain.invoke({'query': state['query'], 'response': state['response']})}"
|
| 378 |
+
print("feedback: ", feedback)
|
| 379 |
+
print(f"State: {state}")
|
| 380 |
+
state['feedback'] = feedback
|
| 381 |
+
return state
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
def refine_query(state: Dict) -> Dict:
|
| 385 |
+
"""
|
| 386 |
+
Suggests improvements for the expanded query.
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
state (Dict): The current state of the workflow, containing the query and expanded query.
|
| 390 |
+
|
| 391 |
+
Returns:
|
| 392 |
+
Dict: The updated state with query refinement suggestions.
|
| 393 |
+
"""
|
| 394 |
+
print("---------refine_query---------")
|
| 395 |
+
|
| 396 |
+
system_message = '''
|
| 397 |
+
Given following query and expanded_query that is generated for improve search result,
|
| 398 |
+
your task is to provide improvements that can be made to expanded_query and enhance search precision.
|
| 399 |
+
'''
|
| 400 |
+
|
| 401 |
+
refine_query_prompt = ChatPromptTemplate.from_messages([
|
| 402 |
+
("system", system_message),
|
| 403 |
+
("user", "Original Query: {query}\nExpanded Query: {expanded_query}\n\n"
|
| 404 |
+
"What improvements can be made for a better search?")
|
| 405 |
+
])
|
| 406 |
+
|
| 407 |
+
chain = refine_query_prompt | llm | StrOutputParser()
|
| 408 |
+
|
| 409 |
+
# Store refinement suggestions without modifying the original expanded query
|
| 410 |
+
query_feedback = f"Previous Expanded Query: {state['expanded_query']}\nSuggestions: {chain.invoke({'query': state['query'], 'expanded_query': state['expanded_query']})}"
|
| 411 |
+
print("query_feedback: ", query_feedback)
|
| 412 |
+
print(f"Groundedness loop count: {state['groundedness_loop_count']}")
|
| 413 |
+
state['query_feedback'] = query_feedback
|
| 414 |
+
return state
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
def should_continue_groundedness(state):
|
| 418 |
+
"""Decides if groundedness is sufficient or needs improvement."""
|
| 419 |
+
print("---------should_continue_groundedness---------")
|
| 420 |
+
print("groundedness loop count: ", state['groundedness_loop_count'])
|
| 421 |
+
if state['groundedness_score'] >= 0.9: # Complete the code to define the threshold for groundedness
|
| 422 |
+
print("Moving to precision")
|
| 423 |
+
return "check_precision"
|
| 424 |
+
else:
|
| 425 |
+
if state["groundedness_loop_count"] > state['loop_max_iter']:
|
| 426 |
+
return "max_iterations_reached"
|
| 427 |
+
else:
|
| 428 |
+
print(f"---------Groundedness Score Threshold Not met. Refining Response-----------")
|
| 429 |
+
return "refine_response"
|
| 430 |
+
|
| 431 |
+
def should_continue_precision(state: Dict) -> str:
|
| 432 |
+
"""Decides if precision is sufficient or needs improvement."""
|
| 433 |
+
print("---------should_continue_precision---------")
|
| 434 |
+
print("precision loop count: ", state['precision_loop_count'])
|
| 435 |
+
if state['precision_score'] >= 0.9: # Threshold for precision
|
| 436 |
+
return "pass" # Complete the workflow
|
| 437 |
+
else:
|
| 438 |
+
if state['precision_loop_count'] > state['loop_max_iter']: # Maximum allowed loops
|
| 439 |
+
return "max_iterations_reached"
|
| 440 |
+
else:
|
| 441 |
+
print(f"---------Precision Score Threshold Not met. Refining Query-----------") # Debugging
|
| 442 |
+
return "refine_query" # Refine the query
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def max_iterations_reached(state: Dict) -> Dict:
|
| 446 |
+
"""Handles the case when the maximum number of iterations is reached."""
|
| 447 |
+
print("---------max_iterations_reached---------")
|
| 448 |
+
"""Handles the case when the maximum number of iterations is reached."""
|
| 449 |
+
response = "I'm unable to refine the response further. Please provide more context or clarify your question."
|
| 450 |
+
state['response'] = response
|
| 451 |
+
return state
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
from langgraph.graph import END, StateGraph, START
|
| 455 |
+
|
| 456 |
+
def create_workflow() -> StateGraph:
|
| 457 |
+
"""Creates the updated workflow for the AI nutrition agent."""
|
| 458 |
+
workflow = StateGraph(AgentState) # Complete the code to define the initial state of the agent
|
| 459 |
+
|
| 460 |
+
# Add processing nodes
|
| 461 |
+
workflow.add_node("expand_query", expand_query) # Step 1: Expand user query. Complete with the function to expand the query
|
| 462 |
+
workflow.add_node("retrieve_context", retrieve_context) # Step 2: Retrieve relevant documents. Complete with the function to retrieve context
|
| 463 |
+
workflow.add_node("craft_response", craft_response) # Step 3: Generate a response based on retrieved data. Complete with the function to craft a response
|
| 464 |
+
workflow.add_node("score_groundedness", score_groundedness) # Step 4: Evaluate response grounding. Complete with the function to score groundedness
|
| 465 |
+
workflow.add_node("refine_response", refine_response) # Step 5: Improve response if it's weakly grounded. Complete with the function to refine the response
|
| 466 |
+
workflow.add_node("check_precision", check_precision) # Step 6: Evaluate response precision. Complete with the function to check precision
|
| 467 |
+
workflow.add_node("refine_query", refine_query) # Step 7: Improve query if response lacks precision. Complete with the function to refine the query
|
| 468 |
+
workflow.add_node("max_iterations_reached", max_iterations_reached) # Step 8: Handle max iterations. Complete with the function to handle max iterations
|
| 469 |
+
|
| 470 |
+
# Main flow edges
|
| 471 |
+
workflow.add_edge(START, "expand_query")
|
| 472 |
+
workflow.add_edge("expand_query", "retrieve_context")
|
| 473 |
+
workflow.add_edge("retrieve_context", "craft_response")
|
| 474 |
+
workflow.add_edge("craft_response", "score_groundedness")
|
| 475 |
+
|
| 476 |
+
# Conditional edges based on groundedness check
|
| 477 |
+
workflow.add_conditional_edges(
|
| 478 |
+
"score_groundedness",
|
| 479 |
+
should_continue_groundedness, # Use the conditional function
|
| 480 |
+
{
|
| 481 |
+
"check_precision": "check_precision", # If well-grounded, proceed to precision check. Use the node name "check_precision"
|
| 482 |
+
"refine_response": "refine_response", # If not, refine the response.
|
| 483 |
+
"max_iterations_reached": "max_iterations_reached" # If max loops reached, exit.
|
| 484 |
+
}
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
workflow.add_edge("refine_response", "craft_response") # Refined responses are reprocessed.
|
| 488 |
+
|
| 489 |
+
# Conditional edges based on precision check
|
| 490 |
+
workflow.add_conditional_edges(
|
| 491 |
+
"check_precision",
|
| 492 |
+
should_continue_precision, # Use the conditional function
|
| 493 |
+
{
|
| 494 |
+
"pass": END, # If precise, complete the workflow.
|
| 495 |
+
"refine_query": "refine_query", # If imprecise, refine the query.
|
| 496 |
+
"max_iterations_reached": "max_iterations_reached" # If max loops reached, exit.
|
| 497 |
+
}
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
workflow.add_edge("refine_query", "expand_query") # Refined queries go through expansion again.
|
| 501 |
+
|
| 502 |
+
workflow.add_edge("max_iterations_reached", END)
|
| 503 |
+
|
| 504 |
+
return workflow
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
#=========================== Defining the agentic rag tool ====================#
|
| 508 |
+
|
| 509 |
+
WORKFLOW_APP = create_workflow().compile()
|
| 510 |
+
@tool
|
| 511 |
+
def agentic_rag(query: str):
|
| 512 |
+
"""
|
| 513 |
+
Runs the RAG-based agent with conversation history for context-aware responses.
|
| 514 |
+
|
| 515 |
+
Args:
|
| 516 |
+
query (str): The current user query.
|
| 517 |
+
|
| 518 |
+
Returns:
|
| 519 |
+
Dict[str, Any]: The updated state with the generated response and conversation history.
|
| 520 |
+
"""
|
| 521 |
+
# Initialize state with necessary parameters
|
| 522 |
+
inputs = {
|
| 523 |
+
"query": query, # Current user query
|
| 524 |
+
"expanded_query": "", # Complete the code to define the expanded version of the query
|
| 525 |
+
"context": [], # Retrieved documents (initially empty)
|
| 526 |
+
"response": "", # Complete the code to define the AI-generated response
|
| 527 |
+
"precision_score": 0.0, # Complete the code to define the precision score of the response
|
| 528 |
+
"groundedness_score": 0.0, # Complete the code to define the groundedness score of the response
|
| 529 |
+
"groundedness_loop_count": 3, # Complete the code to define the counter for groundedness loops
|
| 530 |
+
"precision_loop_count": 3, # Complete the code to define the counter for precision loops
|
| 531 |
+
"feedback": "", # Complete the code to define the feedback
|
| 532 |
+
"query_feedback": "", # Complete the code to define the query feedback
|
| 533 |
+
"loop_max_iter": 3 # Complete the code to define the maximum number of iterations for loops
|
| 534 |
+
}
|
| 535 |
+
|
| 536 |
+
output = WORKFLOW_APP.invoke(inputs)
|
| 537 |
+
|
| 538 |
+
return output
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
# Function to filter user input with Llama Guard
|
| 543 |
+
def filter_input_with_llama_guard(user_input, model="llama-guard-3-8b"):
|
| 544 |
+
"""
|
| 545 |
+
Filters user input using Llama Guard to ensure it is safe.
|
| 546 |
+
|
| 547 |
+
Parameters:
|
| 548 |
+
- user_input: The input provided by the user.
|
| 549 |
+
- model: The Llama Guard model to be used for filtering (default is "llama-guard-3-8b").
|
| 550 |
+
|
| 551 |
+
Returns:
|
| 552 |
+
- The filtered and safe input.
|
| 553 |
+
"""
|
| 554 |
+
try:
|
| 555 |
+
# Create a request to Llama Guard to filter the user input
|
| 556 |
+
response = llama_guard_client.chat.completions.create(
|
| 557 |
+
messages=[{"role": "user", "content": user_input}],
|
| 558 |
+
model=model,
|
| 559 |
+
)
|
| 560 |
+
# Return the filtered input
|
| 561 |
+
return response.choices[0].message.content.strip()
|
| 562 |
+
except Exception as e:
|
| 563 |
+
print(f"Error with Llama Guard: {e}")
|
| 564 |
+
return None
|
| 565 |
+
|
| 566 |
+
#============================= Adding Memory to the agent using mem0 ===============================#
|
| 567 |
+
|
| 568 |
+
class NutritionBot:
|
| 569 |
+
|
| 570 |
+
def __init__(self):
|
| 571 |
+
"""
|
| 572 |
+
Initialize the NutritionBot class, setting up memory, the LLM client, tools, and the agent executor.
|
| 573 |
+
"""
|
| 574 |
+
|
| 575 |
+
# Initialize a memory client to store and retrieve customer interactions
|
| 576 |
+
self.memory = MemoryClient(api_key=MEM0_api_key) # Complete the code to define the memory client API key
|
| 577 |
+
|
| 578 |
+
# Initialize the Azure OpenAI client using the provided credentials
|
| 579 |
+
self.client = AzureChatOpenAI(
|
| 580 |
+
model_name= model_name, # Specify the model to use (e.g., GPT-4 optimized version)
|
| 581 |
+
api_key= api_key, # API key for authentication
|
| 582 |
+
azure_endpoint= endpoint, # Endpoint URL for Azure OpenAI
|
| 583 |
+
api_version= api_version, # API version being used
|
| 584 |
+
temperature= 0 # Controls randomness in responses; 0 ensures deterministic results
|
| 585 |
+
)
|
| 586 |
+
|
| 587 |
+
# Define tools available to the chatbot, such as web search
|
| 588 |
+
tools = [agentic_rag]
|
| 589 |
+
|
| 590 |
+
# Define the system prompt to set the behavior of the chatbot
|
| 591 |
+
system_prompt = """You are a caring and knowledgeable Medical Support Agent, specializing in nutrition disorder-related guidance. Your goal is to provide accurate, empathetic, and tailored nutritional recommendations while ensuring a seamless customer experience.
|
| 592 |
+
Guidelines for Interaction:
|
| 593 |
+
Maintain a polite, professional, and reassuring tone.
|
| 594 |
+
Show genuine empathy for customer concerns and health challenges.
|
| 595 |
+
Reference past interactions to provide personalized and consistent advice.
|
| 596 |
+
Engage with the customer by asking about their food preferences, dietary restrictions, and lifestyle before offering recommendations.
|
| 597 |
+
Ensure consistent and accurate information across conversations.
|
| 598 |
+
If any detail is unclear or missing, proactively ask for clarification.
|
| 599 |
+
Always use the agentic_rag tool to retrieve up-to-date and evidence-based nutrition insights.
|
| 600 |
+
Keep track of ongoing issues and follow-ups to ensure continuity in support.
|
| 601 |
+
Your primary goal is to help customers make informed nutrition decisions that align with their health conditions and personal preferences.
|
| 602 |
+
|
| 603 |
+
"""
|
| 604 |
+
# Build the prompt template for the agent
|
| 605 |
+
prompt = ChatPromptTemplate.from_messages([
|
| 606 |
+
("system", system_prompt), # System instructions
|
| 607 |
+
("human", "{input}"), # Placeholder for human input
|
| 608 |
+
("placeholder", "{agent_scratchpad}") # Placeholder for intermediate reasoning steps
|
| 609 |
+
])
|
| 610 |
+
|
| 611 |
+
# Create an agent capable of interacting with tools and executing tasks
|
| 612 |
+
agent = create_tool_calling_agent(self.client, tools, prompt)
|
| 613 |
+
|
| 614 |
+
# Wrap the agent in an executor to manage tool interactions and execution flow
|
| 615 |
+
self.agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
| 616 |
+
|
| 617 |
+
#===================================================================================
|
| 618 |
+
def store_customer_interaction(self, user_id: str, message: str, response: str, metadata: Dict = None):
|
| 619 |
+
"""
|
| 620 |
+
Store customer interaction in memory for future reference.
|
| 621 |
+
|
| 622 |
+
Args:
|
| 623 |
+
user_id (str): Unique identifier for the customer.
|
| 624 |
+
message (str): Customer's query or message.
|
| 625 |
+
response (str): Chatbot's response.
|
| 626 |
+
metadata (Dict, optional): Additional metadata for the interaction.
|
| 627 |
+
"""
|
| 628 |
+
if metadata is None:
|
| 629 |
+
metadata = {}
|
| 630 |
+
|
| 631 |
+
# Add a timestamp to the metadata for tracking purposes
|
| 632 |
+
metadata["timestamp"] = datetime.now().isoformat()
|
| 633 |
+
|
| 634 |
+
# Format the conversation for storage
|
| 635 |
+
conversation = [
|
| 636 |
+
{"role": "user", "content": message},
|
| 637 |
+
{"role": "assistant", "content": response}
|
| 638 |
+
]
|
| 639 |
+
|
| 640 |
+
# Store the interaction in the memory client
|
| 641 |
+
self.memory.add(
|
| 642 |
+
conversation,
|
| 643 |
+
user_id=user_id,
|
| 644 |
+
output_format="v1.1",
|
| 645 |
+
metadata=metadata
|
| 646 |
+
)
|
| 647 |
+
|
| 648 |
+
def get_relevant_history(self, user_id: str, query: str) -> List[Dict]:
|
| 649 |
+
"""
|
| 650 |
+
Retrieve past interactions relevant to the current query.
|
| 651 |
+
|
| 652 |
+
Args:
|
| 653 |
+
user_id (str): Unique identifier for the customer.
|
| 654 |
+
query (str): The customer's current query.
|
| 655 |
+
|
| 656 |
+
Returns:
|
| 657 |
+
List[Dict]: A list of relevant past interactions.
|
| 658 |
+
"""
|
| 659 |
+
return self.memory.search(
|
| 660 |
+
query=query, # Search for interactions related to the query
|
| 661 |
+
user_id=user_id, # Restrict search to the specific user
|
| 662 |
+
limit=5 # Complete the code to define the limit for retrieved interactions
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
|
| 666 |
+
def handle_customer_query(self, user_id: str, query: str) -> str:
|
| 667 |
+
"""
|
| 668 |
+
Process a customer's query and provide a response, taking into account past interactions.
|
| 669 |
+
|
| 670 |
+
Args:
|
| 671 |
+
user_id (str): Unique identifier for the customer.
|
| 672 |
+
query (str): Customer's query.
|
| 673 |
+
|
| 674 |
+
Returns:
|
| 675 |
+
str: Chatbot's response.
|
| 676 |
+
"""
|
| 677 |
+
|
| 678 |
+
# Retrieve relevant past interactions for context
|
| 679 |
+
relevant_history = self.get_relevant_history(user_id, query)
|
| 680 |
+
|
| 681 |
+
# Build a context string from the relevant history
|
| 682 |
+
context = "Previous relevant interactions:\n"
|
| 683 |
+
for memory in relevant_history:
|
| 684 |
+
context += f"Customer: {memory['memory']}\n" # Customer's past messages
|
| 685 |
+
context += f"Support: {memory['memory']}\n" # Chatbot's past responses
|
| 686 |
+
context += "---\n"
|
| 687 |
+
|
| 688 |
+
# Print context for debugging purposes
|
| 689 |
+
print("Context: ", context)
|
| 690 |
+
|
| 691 |
+
# Prepare a prompt combining past context and the current query
|
| 692 |
+
prompt = f"""
|
| 693 |
+
Context:
|
| 694 |
+
{context}
|
| 695 |
+
|
| 696 |
+
Current customer query: {query}
|
| 697 |
+
|
| 698 |
+
Provide a helpful response that takes into account any relevant past interactions.
|
| 699 |
+
"""
|
| 700 |
+
|
| 701 |
+
# Generate a response using the agent
|
| 702 |
+
response = self.agent_executor.invoke({"input": prompt})
|
| 703 |
+
|
| 704 |
+
# Store the current interaction for future reference
|
| 705 |
+
self.store_customer_interaction(
|
| 706 |
+
user_id=user_id,
|
| 707 |
+
message=query,
|
| 708 |
+
response=response["output"],
|
| 709 |
+
metadata={"type": "support_query"}
|
| 710 |
+
)
|
| 711 |
+
|
| 712 |
+
# Return the chatbot's response
|
| 713 |
+
return response['output']
|
| 714 |
+
|
| 715 |
+
#=====================User Interface using streamlit ===========================#
|
| 716 |
+
def nutrition_disorder_streamlit():
|
| 717 |
+
"""
|
| 718 |
+
A Streamlit-based UI for the Nutrition Disorder Specialist Agent.
|
| 719 |
+
"""
|
| 720 |
+
st.title("Nutrition Disorder Specialist")
|
| 721 |
+
st.write("Ask me anything about nutrition disorders, symptoms, causes, treatments, and more.")
|
| 722 |
+
st.write("Type 'exit' to end the conversation.")
|
| 723 |
+
|
| 724 |
+
# Initialize session state for chat history and user_id if they don't exist
|
| 725 |
+
if 'chat_history' not in st.session_state:
|
| 726 |
+
st.session_state.chat_history = []
|
| 727 |
+
if 'user_id' not in st.session_state:
|
| 728 |
+
st.session_state.user_id = None
|
| 729 |
+
|
| 730 |
+
# Login form: Only if user is not logged in
|
| 731 |
+
if st.session_state.user_id is None:
|
| 732 |
+
with st.form("login_form", clear_on_submit=True):
|
| 733 |
+
user_id = st.text_input("Please enter your name to begin:")
|
| 734 |
+
submit_button = st.form_submit_button("Login")
|
| 735 |
+
if submit_button and user_id:
|
| 736 |
+
st.session_state.user_id = user_id
|
| 737 |
+
st.session_state.chat_history.append({
|
| 738 |
+
"role": "assistant",
|
| 739 |
+
"content": f"Welcome, {user_id}! How can I help you with nutrition disorders today?"
|
| 740 |
+
})
|
| 741 |
+
st.session_state.login_submitted = True # Set flag to trigger rerun
|
| 742 |
+
if st.session_state.get("login_submitted", False):
|
| 743 |
+
st.session_state.pop("login_submitted")
|
| 744 |
+
st.rerun()
|
| 745 |
+
else:
|
| 746 |
+
# Display chat history
|
| 747 |
+
for message in st.session_state.chat_history:
|
| 748 |
+
with st.chat_message(message["role"]):
|
| 749 |
+
st.write(message["content"])
|
| 750 |
+
|
| 751 |
+
# Chat input with custom placeholder text
|
| 752 |
+
user_query = st.chat_input("Type your question here (or 'exit' to end)...") # Blank #1: Fill in the chat input prompt (e.g., "Type your question here (or 'exit' to end)...")
|
| 753 |
+
if user_query:
|
| 754 |
+
if user_query.lower() == "exit":
|
| 755 |
+
st.session_state.chat_history.append({"role": "user", "content": "exit"})
|
| 756 |
+
with st.chat_message("user"):
|
| 757 |
+
st.write("exit")
|
| 758 |
+
goodbye_msg = "Goodbye! Feel free to return if you have more questions about nutrition disorders."
|
| 759 |
+
st.session_state.chat_history.append({"role": "assistant", "content": goodbye_msg})
|
| 760 |
+
with st.chat_message("assistant"):
|
| 761 |
+
st.write(goodbye_msg)
|
| 762 |
+
st.session_state.user_id = None
|
| 763 |
+
st.rerun()
|
| 764 |
+
return
|
| 765 |
+
|
| 766 |
+
st.session_state.chat_history.append({"role": "user", "content": user_query})
|
| 767 |
+
with st.chat_message("user"):
|
| 768 |
+
st.write(user_query)
|
| 769 |
+
|
| 770 |
+
# Filter input through Llama Guard - returns "SAFE" or "UNSAFE"
|
| 771 |
+
filtered_result = filter_input_with_llama_guard(user_query) # Call function to filter input
|
| 772 |
+
filtered_result = filtered_result.replace("\n", " ") # Normalize the result
|
| 773 |
+
st.write(filtered_result)
|
| 774 |
+
|
| 775 |
+
# Check if input is safe based on allowed statuses
|
| 776 |
+
# Blanks #3, #4, #5: Fill in with allowed safe statuses (e.g., "safe", "unsafe S7", "unsafe S6")\
|
| 777 |
+
# You need to by pass some cases like "S6" and "S7" so that it can work effectively.
|
| 778 |
+
|
| 779 |
+
if filtered_result in ["safe","unsafe S7", "unsafe S6"]:
|
| 780 |
+
try:
|
| 781 |
+
if 'chatbot' not in st.session_state:
|
| 782 |
+
st.session_state.chatbot = NutritionBot() # Blank #6: Fill in with the chatbot class initialization (e.g., NutritionBot)
|
| 783 |
+
response = st.session_state.chatbot.handle_customer_query(st.session_state.user_id, user_query)
|
| 784 |
+
# Blank #7: Fill in with the method to handle queries (e.g., handle_customer_query)
|
| 785 |
+
st.write(response)
|
| 786 |
+
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
| 787 |
+
except Exception as e:
|
| 788 |
+
error_msg = f"Sorry, I encountered an error while processing your query. Please try again. Error: {str(e)}"
|
| 789 |
+
st.write(error_msg)
|
| 790 |
+
st.session_state.chat_history.append({"role": "assistant", "content": error_msg})
|
| 791 |
+
else:
|
| 792 |
+
inappropriate_msg = "I apologize, but I cannot process that input as it may be inappropriate. Please try again."
|
| 793 |
+
st.write(inappropriate_msg)
|
| 794 |
+
st.session_state.chat_history.append({"role": "assistant", "content": inappropriate_msg})
|
| 795 |
+
|
| 796 |
+
if __name__ == "__main__":
|
| 797 |
+
nutrition_disorder_streamlit()
|