Delete tests
Browse files- tests/__init__.py +0 -22
- tests/conftest.py +0 -83
- tests/test_cli.py +0 -122
- tests/test_cuda.py +0 -155
- tests/test_engine.py +0 -131
- tests/test_exports.py +0 -216
- tests/test_integrations.py +0 -150
- tests/test_python.py +0 -615
- tests/test_solutions.py +0 -94
tests/__init__.py
DELETED
|
@@ -1,22 +0,0 @@
|
|
| 1 |
-
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
| 2 |
-
|
| 3 |
-
from ultralytics.utils import ASSETS, ROOT, WEIGHTS_DIR, checks
|
| 4 |
-
|
| 5 |
-
# Constants used in tests
|
| 6 |
-
MODEL = WEIGHTS_DIR / "path with spaces" / "yolo11n.pt" # test spaces in path
|
| 7 |
-
CFG = "yolo11n.yaml"
|
| 8 |
-
SOURCE = ASSETS / "bus.jpg"
|
| 9 |
-
SOURCES_LIST = [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]
|
| 10 |
-
TMP = (ROOT / "../tests/tmp").resolve() # temp directory for test files
|
| 11 |
-
CUDA_IS_AVAILABLE = checks.cuda_is_available()
|
| 12 |
-
CUDA_DEVICE_COUNT = checks.cuda_device_count()
|
| 13 |
-
|
| 14 |
-
__all__ = (
|
| 15 |
-
"MODEL",
|
| 16 |
-
"CFG",
|
| 17 |
-
"SOURCE",
|
| 18 |
-
"SOURCES_LIST",
|
| 19 |
-
"TMP",
|
| 20 |
-
"CUDA_IS_AVAILABLE",
|
| 21 |
-
"CUDA_DEVICE_COUNT",
|
| 22 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/conftest.py
DELETED
|
@@ -1,83 +0,0 @@
|
|
| 1 |
-
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
| 2 |
-
|
| 3 |
-
import shutil
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
|
| 6 |
-
from tests import TMP
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
def pytest_addoption(parser):
|
| 10 |
-
"""
|
| 11 |
-
Add custom command-line options to pytest.
|
| 12 |
-
|
| 13 |
-
Args:
|
| 14 |
-
parser (pytest.config.Parser): The pytest parser object for adding custom command-line options.
|
| 15 |
-
|
| 16 |
-
Returns:
|
| 17 |
-
(None)
|
| 18 |
-
"""
|
| 19 |
-
parser.addoption("--slow", action="store_true", default=False, help="Run slow tests")
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def pytest_collection_modifyitems(config, items):
|
| 23 |
-
"""
|
| 24 |
-
Modify the list of test items to exclude tests marked as slow if the --slow option is not specified.
|
| 25 |
-
|
| 26 |
-
Args:
|
| 27 |
-
config (pytest.config.Config): The pytest configuration object that provides access to command-line options.
|
| 28 |
-
items (list): The list of collected pytest item objects to be modified based on the presence of --slow option.
|
| 29 |
-
|
| 30 |
-
Returns:
|
| 31 |
-
(None) The function modifies the 'items' list in place, and does not return a value.
|
| 32 |
-
"""
|
| 33 |
-
if not config.getoption("--slow"):
|
| 34 |
-
# Remove the item entirely from the list of test items if it's marked as 'slow'
|
| 35 |
-
items[:] = [item for item in items if "slow" not in item.keywords]
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
def pytest_sessionstart(session):
|
| 39 |
-
"""
|
| 40 |
-
Initialize session configurations for pytest.
|
| 41 |
-
|
| 42 |
-
This function is automatically called by pytest after the 'Session' object has been created but before performing
|
| 43 |
-
test collection. It sets the initial seeds and prepares the temporary directory for the test session.
|
| 44 |
-
|
| 45 |
-
Args:
|
| 46 |
-
session (pytest.Session): The pytest session object.
|
| 47 |
-
|
| 48 |
-
Returns:
|
| 49 |
-
(None)
|
| 50 |
-
"""
|
| 51 |
-
from ultralytics.utils.torch_utils import init_seeds
|
| 52 |
-
|
| 53 |
-
init_seeds()
|
| 54 |
-
shutil.rmtree(TMP, ignore_errors=True) # delete any existing tests/tmp directory
|
| 55 |
-
TMP.mkdir(parents=True, exist_ok=True) # create a new empty directory
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
def pytest_terminal_summary(terminalreporter, exitstatus, config):
|
| 59 |
-
"""
|
| 60 |
-
Cleanup operations after pytest session.
|
| 61 |
-
|
| 62 |
-
This function is automatically called by pytest at the end of the entire test session. It removes certain files
|
| 63 |
-
and directories used during testing.
|
| 64 |
-
|
| 65 |
-
Args:
|
| 66 |
-
terminalreporter (pytest.terminal.TerminalReporter): The terminal reporter object used for terminal output.
|
| 67 |
-
exitstatus (int): The exit status of the test run.
|
| 68 |
-
config (pytest.config.Config): The pytest config object.
|
| 69 |
-
|
| 70 |
-
Returns:
|
| 71 |
-
(None)
|
| 72 |
-
"""
|
| 73 |
-
from ultralytics.utils import WEIGHTS_DIR
|
| 74 |
-
|
| 75 |
-
# Remove files
|
| 76 |
-
models = [path for x in ["*.onnx", "*.torchscript"] for path in WEIGHTS_DIR.rglob(x)]
|
| 77 |
-
for file in ["decelera_portrait_min.mov", "bus.jpg", "yolo11n.onnx", "yolo11n.torchscript"] + models:
|
| 78 |
-
Path(file).unlink(missing_ok=True)
|
| 79 |
-
|
| 80 |
-
# Remove directories
|
| 81 |
-
models = [path for x in ["*.mlpackage", "*_openvino_model"] for path in WEIGHTS_DIR.rglob(x)]
|
| 82 |
-
for directory in [WEIGHTS_DIR / "path with spaces", TMP.parents[1] / ".pytest_cache", TMP] + models:
|
| 83 |
-
shutil.rmtree(directory, ignore_errors=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/test_cli.py
DELETED
|
@@ -1,122 +0,0 @@
|
|
| 1 |
-
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
| 2 |
-
|
| 3 |
-
import subprocess
|
| 4 |
-
|
| 5 |
-
import pytest
|
| 6 |
-
from PIL import Image
|
| 7 |
-
|
| 8 |
-
from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE
|
| 9 |
-
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
|
| 10 |
-
from ultralytics.utils import ASSETS, WEIGHTS_DIR, checks
|
| 11 |
-
from ultralytics.utils.torch_utils import TORCH_1_9
|
| 12 |
-
|
| 13 |
-
# Constants
|
| 14 |
-
TASK_MODEL_DATA = [(task, WEIGHTS_DIR / TASK2MODEL[task], TASK2DATA[task]) for task in TASKS]
|
| 15 |
-
MODELS = [WEIGHTS_DIR / TASK2MODEL[task] for task in TASKS]
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def run(cmd):
|
| 19 |
-
"""Execute a shell command using subprocess."""
|
| 20 |
-
subprocess.run(cmd.split(), check=True)
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def test_special_modes():
|
| 24 |
-
"""Test various special command-line modes for YOLO functionality."""
|
| 25 |
-
run("yolo help")
|
| 26 |
-
run("yolo checks")
|
| 27 |
-
run("yolo version")
|
| 28 |
-
run("yolo settings reset")
|
| 29 |
-
run("yolo cfg")
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
@pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
|
| 33 |
-
def test_train(task, model, data):
|
| 34 |
-
"""Test YOLO training for different tasks, models, and datasets."""
|
| 35 |
-
run(f"yolo train {task} model={model} data={data} imgsz=32 epochs=1 cache=disk")
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
@pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
|
| 39 |
-
def test_val(task, model, data):
|
| 40 |
-
"""Test YOLO validation process for specified task, model, and data using a shell command."""
|
| 41 |
-
run(f"yolo val {task} model={model} data={data} imgsz=32 save_txt save_json")
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
@pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
|
| 45 |
-
def test_predict(task, model, data):
|
| 46 |
-
"""Test YOLO prediction on provided sample assets for specified task and model."""
|
| 47 |
-
run(f"yolo predict model={model} source={ASSETS} imgsz=32 save save_crop save_txt")
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
@pytest.mark.parametrize("model", MODELS)
|
| 51 |
-
def test_export(model):
|
| 52 |
-
"""Test exporting a YOLO model to TorchScript format."""
|
| 53 |
-
run(f"yolo export model={model} format=torchscript imgsz=32")
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
def test_rtdetr(task="detect", model="yolov8n-rtdetr.yaml", data="coco8.yaml"):
|
| 57 |
-
"""Test the RTDETR functionality within Ultralytics for detection tasks using specified model and data."""
|
| 58 |
-
# Warning: must use imgsz=640 (note also add coma, spaces, fraction=0.25 args to test single-image training)
|
| 59 |
-
run(f"yolo train {task} model={model} data={data} --imgsz= 160 epochs =1, cache = disk fraction=0.25")
|
| 60 |
-
run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=160 save save_crop save_txt")
|
| 61 |
-
if TORCH_1_9:
|
| 62 |
-
weights = WEIGHTS_DIR / "rtdetr-l.pt"
|
| 63 |
-
run(f"yolo predict {task} model={weights} source={ASSETS / 'bus.jpg'} imgsz=160 save save_crop save_txt")
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="MobileSAM with CLIP is not supported in Python 3.12")
|
| 67 |
-
def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8-seg.yaml"):
|
| 68 |
-
"""Test FastSAM model for segmenting objects in images using various prompts within Ultralytics."""
|
| 69 |
-
source = ASSETS / "bus.jpg"
|
| 70 |
-
|
| 71 |
-
run(f"yolo segment val {task} model={model} data={data} imgsz=32")
|
| 72 |
-
run(f"yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt")
|
| 73 |
-
|
| 74 |
-
from ultralytics import FastSAM
|
| 75 |
-
from ultralytics.models.sam import Predictor
|
| 76 |
-
|
| 77 |
-
# Create a FastSAM model
|
| 78 |
-
sam_model = FastSAM(model) # or FastSAM-x.pt
|
| 79 |
-
|
| 80 |
-
# Run inference on an image
|
| 81 |
-
for s in (source, Image.open(source)):
|
| 82 |
-
everything_results = sam_model(s, device="cpu", retina_masks=True, imgsz=320, conf=0.4, iou=0.9)
|
| 83 |
-
|
| 84 |
-
# Remove small regions
|
| 85 |
-
new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
|
| 86 |
-
|
| 87 |
-
# Run inference with bboxes and points and texts prompt at the same time
|
| 88 |
-
sam_model(source, bboxes=[439, 437, 524, 709], points=[[200, 200]], labels=[1], texts="a photo of a dog")
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
def test_mobilesam():
|
| 92 |
-
"""Test MobileSAM segmentation with point prompts using Ultralytics."""
|
| 93 |
-
from ultralytics import SAM
|
| 94 |
-
|
| 95 |
-
# Load the model
|
| 96 |
-
model = SAM(WEIGHTS_DIR / "mobile_sam.pt")
|
| 97 |
-
|
| 98 |
-
# Source
|
| 99 |
-
source = ASSETS / "zidane.jpg"
|
| 100 |
-
|
| 101 |
-
# Predict a segment based on a 1D point prompt and 1D labels.
|
| 102 |
-
model.predict(source, points=[900, 370], labels=[1])
|
| 103 |
-
|
| 104 |
-
# Predict a segment based on 3D points and 2D labels (multiple points per object).
|
| 105 |
-
model.predict(source, points=[[[900, 370], [1000, 100]]], labels=[[1, 1]])
|
| 106 |
-
|
| 107 |
-
# Predict a segment based on a box prompt
|
| 108 |
-
model.predict(source, bboxes=[439, 437, 524, 709], save=True)
|
| 109 |
-
|
| 110 |
-
# Predict all
|
| 111 |
-
# model(source)
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
# Slow Tests -----------------------------------------------------------------------------------------------------------
|
| 115 |
-
@pytest.mark.slow
|
| 116 |
-
@pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
|
| 117 |
-
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
| 118 |
-
@pytest.mark.skipif(CUDA_DEVICE_COUNT < 2, reason="DDP is not available")
|
| 119 |
-
def test_train_gpu(task, model, data):
|
| 120 |
-
"""Test YOLO training on GPU(s) for various tasks and models."""
|
| 121 |
-
run(f"yolo train {task} model={model} data={data} imgsz=32 epochs=1 device=0") # single GPU
|
| 122 |
-
run(f"yolo train {task} model={model} data={data} imgsz=32 epochs=1 device=0,1") # multi GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/test_cuda.py
DELETED
|
@@ -1,155 +0,0 @@
|
|
| 1 |
-
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
| 2 |
-
|
| 3 |
-
from itertools import product
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
|
| 6 |
-
import pytest
|
| 7 |
-
import torch
|
| 8 |
-
|
| 9 |
-
from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE, MODEL, SOURCE
|
| 10 |
-
from ultralytics import YOLO
|
| 11 |
-
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
|
| 12 |
-
from ultralytics.utils import ASSETS, WEIGHTS_DIR
|
| 13 |
-
from ultralytics.utils.checks import check_amp
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
def test_checks():
|
| 17 |
-
"""Validate CUDA settings against torch CUDA functions."""
|
| 18 |
-
assert torch.cuda.is_available() == CUDA_IS_AVAILABLE
|
| 19 |
-
assert torch.cuda.device_count() == CUDA_DEVICE_COUNT
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
| 23 |
-
def test_amp():
|
| 24 |
-
"""Test AMP training checks."""
|
| 25 |
-
model = YOLO("yolo11n.pt").model.cuda()
|
| 26 |
-
assert check_amp(model)
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
@pytest.mark.slow
|
| 30 |
-
@pytest.mark.skipif(True, reason="CUDA export tests disabled pending additional Ultralytics GPU server availability")
|
| 31 |
-
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
| 32 |
-
@pytest.mark.parametrize(
|
| 33 |
-
"task, dynamic, int8, half, batch",
|
| 34 |
-
[ # generate all combinations but exclude those where both int8 and half are True
|
| 35 |
-
(task, dynamic, int8, half, batch)
|
| 36 |
-
# Note: tests reduced below pending compute availability expansion as GPU CI runner utilization is high
|
| 37 |
-
# for task, dynamic, int8, half, batch in product(TASKS, [True, False], [True, False], [True, False], [1, 2])
|
| 38 |
-
for task, dynamic, int8, half, batch in product(TASKS, [True], [True], [False], [2])
|
| 39 |
-
if not (int8 and half) # exclude cases where both int8 and half are True
|
| 40 |
-
],
|
| 41 |
-
)
|
| 42 |
-
def test_export_engine_matrix(task, dynamic, int8, half, batch):
|
| 43 |
-
"""Test YOLO model export to TensorRT format for various configurations and run inference."""
|
| 44 |
-
file = YOLO(TASK2MODEL[task]).export(
|
| 45 |
-
format="engine",
|
| 46 |
-
imgsz=32,
|
| 47 |
-
dynamic=dynamic,
|
| 48 |
-
int8=int8,
|
| 49 |
-
half=half,
|
| 50 |
-
batch=batch,
|
| 51 |
-
data=TASK2DATA[task],
|
| 52 |
-
workspace=1, # reduce workspace GB for less resource utilization during testing
|
| 53 |
-
simplify=True, # use 'onnxslim'
|
| 54 |
-
)
|
| 55 |
-
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
|
| 56 |
-
Path(file).unlink() # cleanup
|
| 57 |
-
Path(file).with_suffix(".cache").unlink() if int8 else None # cleanup INT8 cache
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
| 61 |
-
def test_train():
|
| 62 |
-
"""Test model training on a minimal dataset using available CUDA devices."""
|
| 63 |
-
device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1]
|
| 64 |
-
YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device) # requires imgsz>=64
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
@pytest.mark.slow
|
| 68 |
-
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
| 69 |
-
def test_predict_multiple_devices():
|
| 70 |
-
"""Validate model prediction consistency across CPU and CUDA devices."""
|
| 71 |
-
model = YOLO("yolo11n.pt")
|
| 72 |
-
model = model.cpu()
|
| 73 |
-
assert str(model.device) == "cpu"
|
| 74 |
-
_ = model(SOURCE) # CPU inference
|
| 75 |
-
assert str(model.device) == "cpu"
|
| 76 |
-
|
| 77 |
-
model = model.to("cuda:0")
|
| 78 |
-
assert str(model.device) == "cuda:0"
|
| 79 |
-
_ = model(SOURCE) # CUDA inference
|
| 80 |
-
assert str(model.device) == "cuda:0"
|
| 81 |
-
|
| 82 |
-
model = model.cpu()
|
| 83 |
-
assert str(model.device) == "cpu"
|
| 84 |
-
_ = model(SOURCE) # CPU inference
|
| 85 |
-
assert str(model.device) == "cpu"
|
| 86 |
-
|
| 87 |
-
model = model.cuda()
|
| 88 |
-
assert str(model.device) == "cuda:0"
|
| 89 |
-
_ = model(SOURCE) # CUDA inference
|
| 90 |
-
assert str(model.device) == "cuda:0"
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
| 94 |
-
def test_autobatch():
|
| 95 |
-
"""Check optimal batch size for YOLO model training using autobatch utility."""
|
| 96 |
-
from ultralytics.utils.autobatch import check_train_batch_size
|
| 97 |
-
|
| 98 |
-
check_train_batch_size(YOLO(MODEL).model.cuda(), imgsz=128, amp=True)
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
@pytest.mark.slow
|
| 102 |
-
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
| 103 |
-
def test_utils_benchmarks():
|
| 104 |
-
"""Profile YOLO models for performance benchmarks."""
|
| 105 |
-
from ultralytics.utils.benchmarks import ProfileModels
|
| 106 |
-
|
| 107 |
-
# Pre-export a dynamic engine model to use dynamic inference
|
| 108 |
-
YOLO(MODEL).export(format="engine", imgsz=32, dynamic=True, batch=1)
|
| 109 |
-
ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile()
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
| 113 |
-
def test_predict_sam():
|
| 114 |
-
"""Test SAM model predictions using different prompts, including bounding boxes and point annotations."""
|
| 115 |
-
from ultralytics import SAM
|
| 116 |
-
from ultralytics.models.sam import Predictor as SAMPredictor
|
| 117 |
-
|
| 118 |
-
# Load a model
|
| 119 |
-
model = SAM(WEIGHTS_DIR / "sam2.1_b.pt")
|
| 120 |
-
|
| 121 |
-
# Display model information (optional)
|
| 122 |
-
model.info()
|
| 123 |
-
|
| 124 |
-
# Run inference
|
| 125 |
-
model(SOURCE, device=0)
|
| 126 |
-
|
| 127 |
-
# Run inference with bboxes prompt
|
| 128 |
-
model(SOURCE, bboxes=[439, 437, 524, 709], device=0)
|
| 129 |
-
|
| 130 |
-
# Run inference with no labels
|
| 131 |
-
model(ASSETS / "zidane.jpg", points=[900, 370], device=0)
|
| 132 |
-
|
| 133 |
-
# Run inference with 1D points and 1D labels
|
| 134 |
-
model(ASSETS / "zidane.jpg", points=[900, 370], labels=[1], device=0)
|
| 135 |
-
|
| 136 |
-
# Run inference with 2D points and 1D labels
|
| 137 |
-
model(ASSETS / "zidane.jpg", points=[[900, 370]], labels=[1], device=0)
|
| 138 |
-
|
| 139 |
-
# Run inference with multiple 2D points and 1D labels
|
| 140 |
-
model(ASSETS / "zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1], device=0)
|
| 141 |
-
|
| 142 |
-
# Run inference with 3D points and 2D labels (multiple points per object)
|
| 143 |
-
model(ASSETS / "zidane.jpg", points=[[[900, 370], [1000, 100]]], labels=[[1, 1]], device=0)
|
| 144 |
-
|
| 145 |
-
# Create SAMPredictor
|
| 146 |
-
overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024, model=WEIGHTS_DIR / "mobile_sam.pt")
|
| 147 |
-
predictor = SAMPredictor(overrides=overrides)
|
| 148 |
-
|
| 149 |
-
# Set image
|
| 150 |
-
predictor.set_image(ASSETS / "zidane.jpg") # set with image file
|
| 151 |
-
# predictor(bboxes=[439, 437, 524, 709])
|
| 152 |
-
# predictor(points=[900, 370], labels=[1])
|
| 153 |
-
|
| 154 |
-
# Reset image
|
| 155 |
-
predictor.reset_image()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/test_engine.py
DELETED
|
@@ -1,131 +0,0 @@
|
|
| 1 |
-
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
| 2 |
-
|
| 3 |
-
import sys
|
| 4 |
-
from unittest import mock
|
| 5 |
-
|
| 6 |
-
from tests import MODEL
|
| 7 |
-
from ultralytics import YOLO
|
| 8 |
-
from ultralytics.cfg import get_cfg
|
| 9 |
-
from ultralytics.engine.exporter import Exporter
|
| 10 |
-
from ultralytics.models.yolo import classify, detect, segment
|
| 11 |
-
from ultralytics.utils import ASSETS, DEFAULT_CFG, WEIGHTS_DIR
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def test_func(*args): # noqa
|
| 15 |
-
"""Test function callback for evaluating YOLO model performance metrics."""
|
| 16 |
-
print("callback test passed")
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
def test_export():
|
| 20 |
-
"""Tests the model exporting function by adding a callback and asserting its execution."""
|
| 21 |
-
exporter = Exporter()
|
| 22 |
-
exporter.add_callback("on_export_start", test_func)
|
| 23 |
-
assert test_func in exporter.callbacks["on_export_start"], "callback test failed"
|
| 24 |
-
f = exporter(model=YOLO("yolo11n.yaml").model)
|
| 25 |
-
YOLO(f)(ASSETS) # exported model inference
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def test_detect():
|
| 29 |
-
"""Test YOLO object detection training, validation, and prediction functionality."""
|
| 30 |
-
overrides = {"data": "coco8.yaml", "model": "yolo11n.yaml", "imgsz": 32, "epochs": 1, "save": False}
|
| 31 |
-
cfg = get_cfg(DEFAULT_CFG)
|
| 32 |
-
cfg.data = "coco8.yaml"
|
| 33 |
-
cfg.imgsz = 32
|
| 34 |
-
|
| 35 |
-
# Trainer
|
| 36 |
-
trainer = detect.DetectionTrainer(overrides=overrides)
|
| 37 |
-
trainer.add_callback("on_train_start", test_func)
|
| 38 |
-
assert test_func in trainer.callbacks["on_train_start"], "callback test failed"
|
| 39 |
-
trainer.train()
|
| 40 |
-
|
| 41 |
-
# Validator
|
| 42 |
-
val = detect.DetectionValidator(args=cfg)
|
| 43 |
-
val.add_callback("on_val_start", test_func)
|
| 44 |
-
assert test_func in val.callbacks["on_val_start"], "callback test failed"
|
| 45 |
-
val(model=trainer.best) # validate best.pt
|
| 46 |
-
|
| 47 |
-
# Predictor
|
| 48 |
-
pred = detect.DetectionPredictor(overrides={"imgsz": [64, 64]})
|
| 49 |
-
pred.add_callback("on_predict_start", test_func)
|
| 50 |
-
assert test_func in pred.callbacks["on_predict_start"], "callback test failed"
|
| 51 |
-
# Confirm there is no issue with sys.argv being empty.
|
| 52 |
-
with mock.patch.object(sys, "argv", []):
|
| 53 |
-
result = pred(source=ASSETS, model=MODEL)
|
| 54 |
-
assert len(result), "predictor test failed"
|
| 55 |
-
|
| 56 |
-
overrides["resume"] = trainer.last
|
| 57 |
-
trainer = detect.DetectionTrainer(overrides=overrides)
|
| 58 |
-
try:
|
| 59 |
-
trainer.train()
|
| 60 |
-
except Exception as e:
|
| 61 |
-
print(f"Expected exception caught: {e}")
|
| 62 |
-
return
|
| 63 |
-
|
| 64 |
-
Exception("Resume test failed!")
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
def test_segment():
|
| 68 |
-
"""Tests image segmentation training, validation, and prediction pipelines using YOLO models."""
|
| 69 |
-
overrides = {"data": "coco8-seg.yaml", "model": "yolo11n-seg.yaml", "imgsz": 32, "epochs": 1, "save": False}
|
| 70 |
-
cfg = get_cfg(DEFAULT_CFG)
|
| 71 |
-
cfg.data = "coco8-seg.yaml"
|
| 72 |
-
cfg.imgsz = 32
|
| 73 |
-
# YOLO(CFG_SEG).train(**overrides) # works
|
| 74 |
-
|
| 75 |
-
# Trainer
|
| 76 |
-
trainer = segment.SegmentationTrainer(overrides=overrides)
|
| 77 |
-
trainer.add_callback("on_train_start", test_func)
|
| 78 |
-
assert test_func in trainer.callbacks["on_train_start"], "callback test failed"
|
| 79 |
-
trainer.train()
|
| 80 |
-
|
| 81 |
-
# Validator
|
| 82 |
-
val = segment.SegmentationValidator(args=cfg)
|
| 83 |
-
val.add_callback("on_val_start", test_func)
|
| 84 |
-
assert test_func in val.callbacks["on_val_start"], "callback test failed"
|
| 85 |
-
val(model=trainer.best) # validate best.pt
|
| 86 |
-
|
| 87 |
-
# Predictor
|
| 88 |
-
pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]})
|
| 89 |
-
pred.add_callback("on_predict_start", test_func)
|
| 90 |
-
assert test_func in pred.callbacks["on_predict_start"], "callback test failed"
|
| 91 |
-
result = pred(source=ASSETS, model=WEIGHTS_DIR / "yolo11n-seg.pt")
|
| 92 |
-
assert len(result), "predictor test failed"
|
| 93 |
-
|
| 94 |
-
# Test resume
|
| 95 |
-
overrides["resume"] = trainer.last
|
| 96 |
-
trainer = segment.SegmentationTrainer(overrides=overrides)
|
| 97 |
-
try:
|
| 98 |
-
trainer.train()
|
| 99 |
-
except Exception as e:
|
| 100 |
-
print(f"Expected exception caught: {e}")
|
| 101 |
-
return
|
| 102 |
-
|
| 103 |
-
Exception("Resume test failed!")
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
def test_classify():
|
| 107 |
-
"""Test image classification including training, validation, and prediction phases."""
|
| 108 |
-
overrides = {"data": "imagenet10", "model": "yolo11n-cls.yaml", "imgsz": 32, "epochs": 1, "save": False}
|
| 109 |
-
cfg = get_cfg(DEFAULT_CFG)
|
| 110 |
-
cfg.data = "imagenet10"
|
| 111 |
-
cfg.imgsz = 32
|
| 112 |
-
# YOLO(CFG_SEG).train(**overrides) # works
|
| 113 |
-
|
| 114 |
-
# Trainer
|
| 115 |
-
trainer = classify.ClassificationTrainer(overrides=overrides)
|
| 116 |
-
trainer.add_callback("on_train_start", test_func)
|
| 117 |
-
assert test_func in trainer.callbacks["on_train_start"], "callback test failed"
|
| 118 |
-
trainer.train()
|
| 119 |
-
|
| 120 |
-
# Validator
|
| 121 |
-
val = classify.ClassificationValidator(args=cfg)
|
| 122 |
-
val.add_callback("on_val_start", test_func)
|
| 123 |
-
assert test_func in val.callbacks["on_val_start"], "callback test failed"
|
| 124 |
-
val(model=trainer.best)
|
| 125 |
-
|
| 126 |
-
# Predictor
|
| 127 |
-
pred = classify.ClassificationPredictor(overrides={"imgsz": [64, 64]})
|
| 128 |
-
pred.add_callback("on_predict_start", test_func)
|
| 129 |
-
assert test_func in pred.callbacks["on_predict_start"], "callback test failed"
|
| 130 |
-
result = pred(source=ASSETS, model=trainer.best)
|
| 131 |
-
assert len(result), "predictor test failed"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/test_exports.py
DELETED
|
@@ -1,216 +0,0 @@
|
|
| 1 |
-
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
| 2 |
-
|
| 3 |
-
import shutil
|
| 4 |
-
import uuid
|
| 5 |
-
from itertools import product
|
| 6 |
-
from pathlib import Path
|
| 7 |
-
|
| 8 |
-
import pytest
|
| 9 |
-
|
| 10 |
-
from tests import MODEL, SOURCE
|
| 11 |
-
from ultralytics import YOLO
|
| 12 |
-
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
|
| 13 |
-
from ultralytics.utils import (
|
| 14 |
-
IS_RASPBERRYPI,
|
| 15 |
-
LINUX,
|
| 16 |
-
MACOS,
|
| 17 |
-
WINDOWS,
|
| 18 |
-
checks,
|
| 19 |
-
)
|
| 20 |
-
from ultralytics.utils.torch_utils import TORCH_1_9, TORCH_1_13
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def test_export_torchscript():
|
| 24 |
-
"""Test YOLO model exporting to TorchScript format for compatibility and correctness."""
|
| 25 |
-
file = YOLO(MODEL).export(format="torchscript", optimize=False, imgsz=32)
|
| 26 |
-
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
def test_export_onnx():
|
| 30 |
-
"""Test YOLO model export to ONNX format with dynamic axes."""
|
| 31 |
-
file = YOLO(MODEL).export(format="onnx", dynamic=True, imgsz=32)
|
| 32 |
-
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13")
|
| 36 |
-
def test_export_openvino():
|
| 37 |
-
"""Test YOLO exports to OpenVINO format for model inference compatibility."""
|
| 38 |
-
file = YOLO(MODEL).export(format="openvino", imgsz=32)
|
| 39 |
-
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
@pytest.mark.slow
|
| 43 |
-
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13")
|
| 44 |
-
@pytest.mark.parametrize(
|
| 45 |
-
"task, dynamic, int8, half, batch",
|
| 46 |
-
[ # generate all combinations but exclude those where both int8 and half are True
|
| 47 |
-
(task, dynamic, int8, half, batch)
|
| 48 |
-
for task, dynamic, int8, half, batch in product(TASKS, [True, False], [True, False], [True, False], [1, 2])
|
| 49 |
-
if not (int8 and half) # exclude cases where both int8 and half are True
|
| 50 |
-
],
|
| 51 |
-
)
|
| 52 |
-
def test_export_openvino_matrix(task, dynamic, int8, half, batch):
|
| 53 |
-
"""Test YOLO model exports to OpenVINO under various configuration matrix conditions."""
|
| 54 |
-
file = YOLO(TASK2MODEL[task]).export(
|
| 55 |
-
format="openvino",
|
| 56 |
-
imgsz=32,
|
| 57 |
-
dynamic=dynamic,
|
| 58 |
-
int8=int8,
|
| 59 |
-
half=half,
|
| 60 |
-
batch=batch,
|
| 61 |
-
data=TASK2DATA[task],
|
| 62 |
-
)
|
| 63 |
-
if WINDOWS:
|
| 64 |
-
# Use unique filenames due to Windows file permissions bug possibly due to latent threaded use
|
| 65 |
-
# See https://github.com/ultralytics/ultralytics/actions/runs/8957949304/job/24601616830?pr=10423
|
| 66 |
-
file = Path(file)
|
| 67 |
-
file = file.rename(file.with_stem(f"{file.stem}-{uuid.uuid4()}"))
|
| 68 |
-
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
|
| 69 |
-
shutil.rmtree(file, ignore_errors=True) # retry in case of potential lingering multi-threaded file usage errors
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
@pytest.mark.slow
|
| 73 |
-
@pytest.mark.parametrize(
|
| 74 |
-
"task, dynamic, int8, half, batch, simplify", product(TASKS, [True, False], [False], [False], [1, 2], [True, False])
|
| 75 |
-
)
|
| 76 |
-
def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify):
|
| 77 |
-
"""Test YOLO exports to ONNX format with various configurations and parameters."""
|
| 78 |
-
file = YOLO(TASK2MODEL[task]).export(
|
| 79 |
-
format="onnx",
|
| 80 |
-
imgsz=32,
|
| 81 |
-
dynamic=dynamic,
|
| 82 |
-
int8=int8,
|
| 83 |
-
half=half,
|
| 84 |
-
batch=batch,
|
| 85 |
-
simplify=simplify,
|
| 86 |
-
)
|
| 87 |
-
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
|
| 88 |
-
Path(file).unlink() # cleanup
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
@pytest.mark.slow
|
| 92 |
-
@pytest.mark.parametrize("task, dynamic, int8, half, batch", product(TASKS, [False], [False], [False], [1, 2]))
|
| 93 |
-
def test_export_torchscript_matrix(task, dynamic, int8, half, batch):
|
| 94 |
-
"""Tests YOLO model exports to TorchScript format under varied configurations."""
|
| 95 |
-
file = YOLO(TASK2MODEL[task]).export(
|
| 96 |
-
format="torchscript",
|
| 97 |
-
imgsz=32,
|
| 98 |
-
dynamic=dynamic,
|
| 99 |
-
int8=int8,
|
| 100 |
-
half=half,
|
| 101 |
-
batch=batch,
|
| 102 |
-
)
|
| 103 |
-
YOLO(file)([SOURCE] * 3, imgsz=64 if dynamic else 32) # exported model inference at batch=3
|
| 104 |
-
Path(file).unlink() # cleanup
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
@pytest.mark.slow
|
| 108 |
-
@pytest.mark.skipif(not MACOS, reason="CoreML inference only supported on macOS")
|
| 109 |
-
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8")
|
| 110 |
-
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
|
| 111 |
-
@pytest.mark.parametrize(
|
| 112 |
-
"task, dynamic, int8, half, batch",
|
| 113 |
-
[ # generate all combinations but exclude those where both int8 and half are True
|
| 114 |
-
(task, dynamic, int8, half, batch)
|
| 115 |
-
for task, dynamic, int8, half, batch in product(TASKS, [False], [True, False], [True, False], [1])
|
| 116 |
-
if not (int8 and half) # exclude cases where both int8 and half are True
|
| 117 |
-
],
|
| 118 |
-
)
|
| 119 |
-
def test_export_coreml_matrix(task, dynamic, int8, half, batch):
|
| 120 |
-
"""Test YOLO exports to CoreML format with various parameter configurations."""
|
| 121 |
-
file = YOLO(TASK2MODEL[task]).export(
|
| 122 |
-
format="coreml",
|
| 123 |
-
imgsz=32,
|
| 124 |
-
dynamic=dynamic,
|
| 125 |
-
int8=int8,
|
| 126 |
-
half=half,
|
| 127 |
-
batch=batch,
|
| 128 |
-
)
|
| 129 |
-
YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference at batch=3
|
| 130 |
-
shutil.rmtree(file) # cleanup
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
@pytest.mark.slow
|
| 134 |
-
@pytest.mark.skipif(not checks.IS_PYTHON_MINIMUM_3_10, reason="TFLite export requires Python>=3.10")
|
| 135 |
-
@pytest.mark.skipif(not LINUX, reason="Test disabled as TF suffers from install conflicts on Windows and macOS")
|
| 136 |
-
@pytest.mark.parametrize(
|
| 137 |
-
"task, dynamic, int8, half, batch",
|
| 138 |
-
[ # generate all combinations but exclude those where both int8 and half are True
|
| 139 |
-
(task, dynamic, int8, half, batch)
|
| 140 |
-
for task, dynamic, int8, half, batch in product(TASKS, [False], [True, False], [True, False], [1])
|
| 141 |
-
if not (int8 and half) # exclude cases where both int8 and half are True
|
| 142 |
-
],
|
| 143 |
-
)
|
| 144 |
-
def test_export_tflite_matrix(task, dynamic, int8, half, batch):
|
| 145 |
-
"""Test YOLO exports to TFLite format considering various export configurations."""
|
| 146 |
-
file = YOLO(TASK2MODEL[task]).export(
|
| 147 |
-
format="tflite",
|
| 148 |
-
imgsz=32,
|
| 149 |
-
dynamic=dynamic,
|
| 150 |
-
int8=int8,
|
| 151 |
-
half=half,
|
| 152 |
-
batch=batch,
|
| 153 |
-
)
|
| 154 |
-
YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference at batch=3
|
| 155 |
-
Path(file).unlink() # cleanup
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8")
|
| 159 |
-
@pytest.mark.skipif(WINDOWS, reason="CoreML not supported on Windows") # RuntimeError: BlobWriter not loaded
|
| 160 |
-
@pytest.mark.skipif(IS_RASPBERRYPI, reason="CoreML not supported on Raspberry Pi")
|
| 161 |
-
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
|
| 162 |
-
def test_export_coreml():
|
| 163 |
-
"""Test YOLO exports to CoreML format, optimized for macOS only."""
|
| 164 |
-
if MACOS:
|
| 165 |
-
file = YOLO(MODEL).export(format="coreml", imgsz=32)
|
| 166 |
-
YOLO(file)(SOURCE, imgsz=32) # model prediction only supported on macOS for nms=False models
|
| 167 |
-
else:
|
| 168 |
-
YOLO(MODEL).export(format="coreml", nms=True, imgsz=32)
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
@pytest.mark.skipif(not checks.IS_PYTHON_MINIMUM_3_10, reason="TFLite export requires Python>=3.10")
|
| 172 |
-
@pytest.mark.skipif(not LINUX, reason="Test disabled as TF suffers from install conflicts on Windows and macOS")
|
| 173 |
-
def test_export_tflite():
|
| 174 |
-
"""Test YOLO exports to TFLite format under specific OS and Python version conditions."""
|
| 175 |
-
model = YOLO(MODEL)
|
| 176 |
-
file = model.export(format="tflite", imgsz=32)
|
| 177 |
-
YOLO(file)(SOURCE, imgsz=32)
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
@pytest.mark.skipif(True, reason="Test disabled")
|
| 181 |
-
@pytest.mark.skipif(not LINUX, reason="TF suffers from install conflicts on Windows and macOS")
|
| 182 |
-
def test_export_pb():
|
| 183 |
-
"""Test YOLO exports to TensorFlow's Protobuf (*.pb) format."""
|
| 184 |
-
model = YOLO(MODEL)
|
| 185 |
-
file = model.export(format="pb", imgsz=32)
|
| 186 |
-
YOLO(file)(SOURCE, imgsz=32)
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
@pytest.mark.skipif(True, reason="Test disabled as Paddle protobuf and ONNX protobuf requirements conflict.")
|
| 190 |
-
def test_export_paddle():
|
| 191 |
-
"""Test YOLO exports to Paddle format, noting protobuf conflicts with ONNX."""
|
| 192 |
-
YOLO(MODEL).export(format="paddle", imgsz=32)
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
@pytest.mark.slow
|
| 196 |
-
@pytest.mark.skipif(IS_RASPBERRYPI, reason="MNN not supported on Raspberry Pi")
|
| 197 |
-
def test_export_mnn():
|
| 198 |
-
"""Test YOLO exports to MNN format (WARNING: MNN test must precede NCNN test or CI error on Windows)."""
|
| 199 |
-
file = YOLO(MODEL).export(format="mnn", imgsz=32)
|
| 200 |
-
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
@pytest.mark.slow
|
| 204 |
-
def test_export_ncnn():
|
| 205 |
-
"""Test YOLO exports to NCNN format."""
|
| 206 |
-
file = YOLO(MODEL).export(format="ncnn", imgsz=32)
|
| 207 |
-
YOLO(file)(SOURCE, imgsz=32) # exported model inference
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
@pytest.mark.skipif(True, reason="Test disabled as keras and tensorflow version conflicts with tflite export.")
|
| 211 |
-
@pytest.mark.skipif(not LINUX or MACOS, reason="Skipping test on Windows and Macos")
|
| 212 |
-
def test_export_imx():
|
| 213 |
-
"""Test YOLOv8n exports to IMX format."""
|
| 214 |
-
model = YOLO("yolov8n.pt")
|
| 215 |
-
file = model.export(format="imx", imgsz=32)
|
| 216 |
-
YOLO(file)(SOURCE, imgsz=32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/test_integrations.py
DELETED
|
@@ -1,150 +0,0 @@
|
|
| 1 |
-
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
| 2 |
-
|
| 3 |
-
import contextlib
|
| 4 |
-
import os
|
| 5 |
-
import subprocess
|
| 6 |
-
import time
|
| 7 |
-
from pathlib import Path
|
| 8 |
-
|
| 9 |
-
import pytest
|
| 10 |
-
|
| 11 |
-
from tests import MODEL, SOURCE, TMP
|
| 12 |
-
from ultralytics import YOLO, download
|
| 13 |
-
from ultralytics.utils import DATASETS_DIR, SETTINGS
|
| 14 |
-
from ultralytics.utils.checks import check_requirements
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
@pytest.mark.skipif(not check_requirements("ray", install=False), reason="ray[tune] not installed")
|
| 18 |
-
def test_model_ray_tune():
|
| 19 |
-
"""Tune YOLO model using Ray for hyperparameter optimization."""
|
| 20 |
-
YOLO("yolo11n-cls.yaml").tune(
|
| 21 |
-
use_ray=True, data="imagenet10", grace_period=1, iterations=1, imgsz=32, epochs=1, plots=False, device="cpu"
|
| 22 |
-
)
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
@pytest.mark.skipif(not check_requirements("mlflow", install=False), reason="mlflow not installed")
|
| 26 |
-
def test_mlflow():
|
| 27 |
-
"""Test training with MLflow tracking enabled (see https://mlflow.org/ for details)."""
|
| 28 |
-
SETTINGS["mlflow"] = True
|
| 29 |
-
YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=3, plots=False, device="cpu")
|
| 30 |
-
SETTINGS["mlflow"] = False
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
@pytest.mark.skipif(True, reason="Test failing in scheduled CI https://github.com/ultralytics/ultralytics/pull/8868")
|
| 34 |
-
@pytest.mark.skipif(not check_requirements("mlflow", install=False), reason="mlflow not installed")
|
| 35 |
-
def test_mlflow_keep_run_active():
|
| 36 |
-
"""Ensure MLflow run status matches MLFLOW_KEEP_RUN_ACTIVE environment variable settings."""
|
| 37 |
-
import mlflow
|
| 38 |
-
|
| 39 |
-
SETTINGS["mlflow"] = True
|
| 40 |
-
run_name = "Test Run"
|
| 41 |
-
os.environ["MLFLOW_RUN"] = run_name
|
| 42 |
-
|
| 43 |
-
# Test with MLFLOW_KEEP_RUN_ACTIVE=True
|
| 44 |
-
os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "True"
|
| 45 |
-
YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu")
|
| 46 |
-
status = mlflow.active_run().info.status
|
| 47 |
-
assert status == "RUNNING", "MLflow run should be active when MLFLOW_KEEP_RUN_ACTIVE=True"
|
| 48 |
-
|
| 49 |
-
run_id = mlflow.active_run().info.run_id
|
| 50 |
-
|
| 51 |
-
# Test with MLFLOW_KEEP_RUN_ACTIVE=False
|
| 52 |
-
os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "False"
|
| 53 |
-
YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu")
|
| 54 |
-
status = mlflow.get_run(run_id=run_id).info.status
|
| 55 |
-
assert status == "FINISHED", "MLflow run should be ended when MLFLOW_KEEP_RUN_ACTIVE=False"
|
| 56 |
-
|
| 57 |
-
# Test with MLFLOW_KEEP_RUN_ACTIVE not set
|
| 58 |
-
os.environ.pop("MLFLOW_KEEP_RUN_ACTIVE", None)
|
| 59 |
-
YOLO("yolo11n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu")
|
| 60 |
-
status = mlflow.get_run(run_id=run_id).info.status
|
| 61 |
-
assert status == "FINISHED", "MLflow run should be ended by default when MLFLOW_KEEP_RUN_ACTIVE is not set"
|
| 62 |
-
SETTINGS["mlflow"] = False
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
@pytest.mark.skipif(not check_requirements("tritonclient", install=False), reason="tritonclient[all] not installed")
|
| 66 |
-
def test_triton():
|
| 67 |
-
"""
|
| 68 |
-
Test NVIDIA Triton Server functionalities with YOLO model.
|
| 69 |
-
|
| 70 |
-
See https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver.
|
| 71 |
-
"""
|
| 72 |
-
check_requirements("tritonclient[all]")
|
| 73 |
-
from tritonclient.http import InferenceServerClient # noqa
|
| 74 |
-
|
| 75 |
-
# Create variables
|
| 76 |
-
model_name = "yolo"
|
| 77 |
-
triton_repo = TMP / "triton_repo" # Triton repo path
|
| 78 |
-
triton_model = triton_repo / model_name # Triton model path
|
| 79 |
-
|
| 80 |
-
# Export model to ONNX
|
| 81 |
-
f = YOLO(MODEL).export(format="onnx", dynamic=True)
|
| 82 |
-
|
| 83 |
-
# Prepare Triton repo
|
| 84 |
-
(triton_model / "1").mkdir(parents=True, exist_ok=True)
|
| 85 |
-
Path(f).rename(triton_model / "1" / "model.onnx")
|
| 86 |
-
(triton_model / "config.pbtxt").touch()
|
| 87 |
-
|
| 88 |
-
# Define image https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver
|
| 89 |
-
tag = "nvcr.io/nvidia/tritonserver:23.09-py3" # 6.4 GB
|
| 90 |
-
|
| 91 |
-
# Pull the image
|
| 92 |
-
subprocess.call(f"docker pull {tag}", shell=True)
|
| 93 |
-
|
| 94 |
-
# Run the Triton server and capture the container ID
|
| 95 |
-
container_id = (
|
| 96 |
-
subprocess.check_output(
|
| 97 |
-
f"docker run -d --rm -v {triton_repo}:/models -p 8000:8000 {tag} tritonserver --model-repository=/models",
|
| 98 |
-
shell=True,
|
| 99 |
-
)
|
| 100 |
-
.decode("utf-8")
|
| 101 |
-
.strip()
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
# Wait for the Triton server to start
|
| 105 |
-
triton_client = InferenceServerClient(url="localhost:8000", verbose=False, ssl=False)
|
| 106 |
-
|
| 107 |
-
# Wait until model is ready
|
| 108 |
-
for _ in range(10):
|
| 109 |
-
with contextlib.suppress(Exception):
|
| 110 |
-
assert triton_client.is_model_ready(model_name)
|
| 111 |
-
break
|
| 112 |
-
time.sleep(1)
|
| 113 |
-
|
| 114 |
-
# Check Triton inference
|
| 115 |
-
YOLO(f"http://localhost:8000/{model_name}", "detect")(SOURCE) # exported model inference
|
| 116 |
-
|
| 117 |
-
# Kill and remove the container at the end of the test
|
| 118 |
-
subprocess.call(f"docker kill {container_id}", shell=True)
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
@pytest.mark.skipif(not check_requirements("pycocotools", install=False), reason="pycocotools not installed")
|
| 122 |
-
def test_pycocotools():
|
| 123 |
-
"""Validate YOLO model predictions on COCO dataset using pycocotools."""
|
| 124 |
-
from ultralytics.models.yolo.detect import DetectionValidator
|
| 125 |
-
from ultralytics.models.yolo.pose import PoseValidator
|
| 126 |
-
from ultralytics.models.yolo.segment import SegmentationValidator
|
| 127 |
-
|
| 128 |
-
# Download annotations after each dataset downloads first
|
| 129 |
-
url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
|
| 130 |
-
|
| 131 |
-
args = {"model": "yolo11n.pt", "data": "coco8.yaml", "save_json": True, "imgsz": 64}
|
| 132 |
-
validator = DetectionValidator(args=args)
|
| 133 |
-
validator()
|
| 134 |
-
validator.is_coco = True
|
| 135 |
-
download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8/annotations")
|
| 136 |
-
_ = validator.eval_json(validator.stats)
|
| 137 |
-
|
| 138 |
-
args = {"model": "yolo11n-seg.pt", "data": "coco8-seg.yaml", "save_json": True, "imgsz": 64}
|
| 139 |
-
validator = SegmentationValidator(args=args)
|
| 140 |
-
validator()
|
| 141 |
-
validator.is_coco = True
|
| 142 |
-
download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8-seg/annotations")
|
| 143 |
-
_ = validator.eval_json(validator.stats)
|
| 144 |
-
|
| 145 |
-
args = {"model": "yolo11n-pose.pt", "data": "coco8-pose.yaml", "save_json": True, "imgsz": 64}
|
| 146 |
-
validator = PoseValidator(args=args)
|
| 147 |
-
validator()
|
| 148 |
-
validator.is_coco = True
|
| 149 |
-
download(f"{url}person_keypoints_val2017.json", dir=DATASETS_DIR / "coco8-pose/annotations")
|
| 150 |
-
_ = validator.eval_json(validator.stats)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/test_python.py
DELETED
|
@@ -1,615 +0,0 @@
|
|
| 1 |
-
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
| 2 |
-
|
| 3 |
-
import contextlib
|
| 4 |
-
import csv
|
| 5 |
-
import urllib
|
| 6 |
-
from copy import copy
|
| 7 |
-
from pathlib import Path
|
| 8 |
-
|
| 9 |
-
import cv2
|
| 10 |
-
import numpy as np
|
| 11 |
-
import pytest
|
| 12 |
-
import torch
|
| 13 |
-
import yaml
|
| 14 |
-
from PIL import Image
|
| 15 |
-
|
| 16 |
-
from tests import CFG, MODEL, SOURCE, SOURCES_LIST, TMP
|
| 17 |
-
from ultralytics import RTDETR, YOLO
|
| 18 |
-
from ultralytics.cfg import MODELS, TASK2DATA, TASKS
|
| 19 |
-
from ultralytics.data.build import load_inference_source
|
| 20 |
-
from ultralytics.utils import (
|
| 21 |
-
ASSETS,
|
| 22 |
-
DEFAULT_CFG,
|
| 23 |
-
DEFAULT_CFG_PATH,
|
| 24 |
-
LOGGER,
|
| 25 |
-
ONLINE,
|
| 26 |
-
ROOT,
|
| 27 |
-
WEIGHTS_DIR,
|
| 28 |
-
WINDOWS,
|
| 29 |
-
checks,
|
| 30 |
-
is_dir_writeable,
|
| 31 |
-
is_github_action_running,
|
| 32 |
-
)
|
| 33 |
-
from ultralytics.utils.downloads import download
|
| 34 |
-
from ultralytics.utils.torch_utils import TORCH_1_9
|
| 35 |
-
|
| 36 |
-
IS_TMP_WRITEABLE = is_dir_writeable(TMP) # WARNING: must be run once tests start as TMP does not exist on tests/init
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def test_model_forward():
|
| 40 |
-
"""Test the forward pass of the YOLO model."""
|
| 41 |
-
model = YOLO(CFG)
|
| 42 |
-
model(source=None, imgsz=32, augment=True) # also test no source and augment
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def test_model_methods():
|
| 46 |
-
"""Test various methods and properties of the YOLO model to ensure correct functionality."""
|
| 47 |
-
model = YOLO(MODEL)
|
| 48 |
-
|
| 49 |
-
# Model methods
|
| 50 |
-
model.info(verbose=True, detailed=True)
|
| 51 |
-
model = model.reset_weights()
|
| 52 |
-
model = model.load(MODEL)
|
| 53 |
-
model.to("cpu")
|
| 54 |
-
model.fuse()
|
| 55 |
-
model.clear_callback("on_train_start")
|
| 56 |
-
model.reset_callbacks()
|
| 57 |
-
|
| 58 |
-
# Model properties
|
| 59 |
-
_ = model.names
|
| 60 |
-
_ = model.device
|
| 61 |
-
_ = model.transforms
|
| 62 |
-
_ = model.task_map
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
def test_model_profile():
|
| 66 |
-
"""Test profiling of the YOLO model with `profile=True` to assess performance and resource usage."""
|
| 67 |
-
from ultralytics.nn.tasks import DetectionModel
|
| 68 |
-
|
| 69 |
-
model = DetectionModel() # build model
|
| 70 |
-
im = torch.randn(1, 3, 64, 64) # requires min imgsz=64
|
| 71 |
-
_ = model.predict(im, profile=True)
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable")
|
| 75 |
-
def test_predict_txt():
|
| 76 |
-
"""Tests YOLO predictions with file, directory, and pattern sources listed in a text file."""
|
| 77 |
-
file = TMP / "sources_multi_row.txt"
|
| 78 |
-
with open(file, "w") as f:
|
| 79 |
-
for src in SOURCES_LIST:
|
| 80 |
-
f.write(f"{src}\n")
|
| 81 |
-
results = YOLO(MODEL)(source=file, imgsz=32)
|
| 82 |
-
assert len(results) == 7 # 1 + 2 + 2 + 2 = 7 images
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
@pytest.mark.skipif(True, reason="disabled for testing")
|
| 86 |
-
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable")
|
| 87 |
-
def test_predict_csv_multi_row():
|
| 88 |
-
"""Tests YOLO predictions with sources listed in multiple rows of a CSV file."""
|
| 89 |
-
file = TMP / "sources_multi_row.csv"
|
| 90 |
-
with open(file, "w", newline="") as f:
|
| 91 |
-
writer = csv.writer(f)
|
| 92 |
-
writer.writerow(["source"])
|
| 93 |
-
writer.writerows([[src] for src in SOURCES_LIST])
|
| 94 |
-
results = YOLO(MODEL)(source=file, imgsz=32)
|
| 95 |
-
assert len(results) == 7 # 1 + 2 + 2 + 2 = 7 images
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
@pytest.mark.skipif(True, reason="disabled for testing")
|
| 99 |
-
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable")
|
| 100 |
-
def test_predict_csv_single_row():
|
| 101 |
-
"""Tests YOLO predictions with sources listed in a single row of a CSV file."""
|
| 102 |
-
file = TMP / "sources_single_row.csv"
|
| 103 |
-
with open(file, "w", newline="") as f:
|
| 104 |
-
writer = csv.writer(f)
|
| 105 |
-
writer.writerow(SOURCES_LIST)
|
| 106 |
-
results = YOLO(MODEL)(source=file, imgsz=32)
|
| 107 |
-
assert len(results) == 7 # 1 + 2 + 2 + 2 = 7 images
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
@pytest.mark.parametrize("model_name", MODELS)
|
| 111 |
-
def test_predict_img(model_name):
|
| 112 |
-
"""Test YOLO model predictions on various image input types and sources, including online images."""
|
| 113 |
-
model = YOLO(WEIGHTS_DIR / model_name)
|
| 114 |
-
im = cv2.imread(str(SOURCE)) # uint8 numpy array
|
| 115 |
-
assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL
|
| 116 |
-
assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray
|
| 117 |
-
assert len(model(torch.rand((2, 3, 32, 32)), imgsz=32)) == 2 # batch-size 2 Tensor, FP32 0.0-1.0 RGB order
|
| 118 |
-
assert len(model(source=[im, im], save=True, save_txt=True, imgsz=32)) == 2 # batch
|
| 119 |
-
assert len(list(model(source=[im, im], save=True, stream=True, imgsz=32))) == 2 # stream
|
| 120 |
-
assert len(model(torch.zeros(320, 640, 3).numpy().astype(np.uint8), imgsz=32)) == 1 # tensor to numpy
|
| 121 |
-
batch = [
|
| 122 |
-
str(SOURCE), # filename
|
| 123 |
-
Path(SOURCE), # Path
|
| 124 |
-
"https://github.com/ultralytics/assets/releases/download/v0.0.0/zidane.jpg" if ONLINE else SOURCE, # URI
|
| 125 |
-
cv2.imread(str(SOURCE)), # OpenCV
|
| 126 |
-
Image.open(SOURCE), # PIL
|
| 127 |
-
np.zeros((320, 640, 3), dtype=np.uint8), # numpy
|
| 128 |
-
]
|
| 129 |
-
assert len(model(batch, imgsz=32)) == len(batch) # multiple sources in a batch
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
@pytest.mark.parametrize("model", MODELS)
|
| 133 |
-
def test_predict_visualize(model):
|
| 134 |
-
"""Test model prediction methods with 'visualize=True' to generate and display prediction visualizations."""
|
| 135 |
-
YOLO(WEIGHTS_DIR / model)(SOURCE, imgsz=32, visualize=True)
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
def test_predict_grey_and_4ch():
|
| 139 |
-
"""Test YOLO prediction on SOURCE converted to greyscale and 4-channel images with various filenames."""
|
| 140 |
-
im = Image.open(SOURCE)
|
| 141 |
-
directory = TMP / "im4"
|
| 142 |
-
directory.mkdir(parents=True, exist_ok=True)
|
| 143 |
-
|
| 144 |
-
source_greyscale = directory / "greyscale.jpg"
|
| 145 |
-
source_rgba = directory / "4ch.png"
|
| 146 |
-
source_non_utf = directory / "non_UTF_测试文件_tést_image.jpg"
|
| 147 |
-
source_spaces = directory / "image with spaces.jpg"
|
| 148 |
-
|
| 149 |
-
im.convert("L").save(source_greyscale) # greyscale
|
| 150 |
-
im.convert("RGBA").save(source_rgba) # 4-ch PNG with alpha
|
| 151 |
-
im.save(source_non_utf) # non-UTF characters in filename
|
| 152 |
-
im.save(source_spaces) # spaces in filename
|
| 153 |
-
|
| 154 |
-
# Inference
|
| 155 |
-
model = YOLO(MODEL)
|
| 156 |
-
for f in source_rgba, source_greyscale, source_non_utf, source_spaces:
|
| 157 |
-
for source in Image.open(f), cv2.imread(str(f)), f:
|
| 158 |
-
results = model(source, save=True, verbose=True, imgsz=32)
|
| 159 |
-
assert len(results) == 1 # verify that an image was run
|
| 160 |
-
f.unlink() # cleanup
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
@pytest.mark.slow
|
| 164 |
-
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
| 165 |
-
@pytest.mark.skipif(is_github_action_running(), reason="No auth https://github.com/JuanBindez/pytubefix/issues/166")
|
| 166 |
-
def test_youtube():
|
| 167 |
-
"""Test YOLO model on a YouTube video stream, handling potential network-related errors."""
|
| 168 |
-
model = YOLO(MODEL)
|
| 169 |
-
try:
|
| 170 |
-
model.predict("https://youtu.be/G17sBkb38XQ", imgsz=96, save=True)
|
| 171 |
-
# Handle internet connection errors and 'urllib.error.HTTPError: HTTP Error 429: Too Many Requests'
|
| 172 |
-
except (urllib.error.HTTPError, ConnectionError) as e:
|
| 173 |
-
LOGGER.warning(f"WARNING: YouTube Test Error: {e}")
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
| 177 |
-
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable")
|
| 178 |
-
def test_track_stream():
|
| 179 |
-
"""
|
| 180 |
-
Tests streaming tracking on a short 10 frame video using ByteTrack tracker and different GMC methods.
|
| 181 |
-
|
| 182 |
-
Note imgsz=160 required for tracking for higher confidence and better matches.
|
| 183 |
-
"""
|
| 184 |
-
video_url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/decelera_portrait_min.mov"
|
| 185 |
-
model = YOLO(MODEL)
|
| 186 |
-
model.track(video_url, imgsz=160, tracker="bytetrack.yaml")
|
| 187 |
-
model.track(video_url, imgsz=160, tracker="botsort.yaml", save_frames=True) # test frame saving also
|
| 188 |
-
|
| 189 |
-
# Test Global Motion Compensation (GMC) methods
|
| 190 |
-
for gmc in "orb", "sift", "ecc":
|
| 191 |
-
with open(ROOT / "cfg/trackers/botsort.yaml", encoding="utf-8") as f:
|
| 192 |
-
data = yaml.safe_load(f)
|
| 193 |
-
tracker = TMP / f"botsort-{gmc}.yaml"
|
| 194 |
-
data["gmc_method"] = gmc
|
| 195 |
-
with open(tracker, "w", encoding="utf-8") as f:
|
| 196 |
-
yaml.safe_dump(data, f)
|
| 197 |
-
model.track(video_url, imgsz=160, tracker=tracker)
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
def test_val():
|
| 201 |
-
"""Test the validation mode of the YOLO model."""
|
| 202 |
-
YOLO(MODEL).val(data="coco8.yaml", imgsz=32, save_hybrid=True)
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
def test_train_scratch():
|
| 206 |
-
"""Test training the YOLO model from scratch using the provided configuration."""
|
| 207 |
-
model = YOLO(CFG)
|
| 208 |
-
model.train(data="coco8.yaml", epochs=2, imgsz=32, cache="disk", batch=-1, close_mosaic=1, name="model")
|
| 209 |
-
model(SOURCE)
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
def test_train_pretrained():
|
| 213 |
-
"""Test training of the YOLO model starting from a pre-trained checkpoint."""
|
| 214 |
-
model = YOLO(WEIGHTS_DIR / "yolo11n-seg.pt")
|
| 215 |
-
model.train(data="coco8-seg.yaml", epochs=1, imgsz=32, cache="ram", copy_paste=0.5, mixup=0.5, name=0)
|
| 216 |
-
model(SOURCE)
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
def test_all_model_yamls():
|
| 220 |
-
"""Test YOLO model creation for all available YAML configurations in the `cfg/models` directory."""
|
| 221 |
-
for m in (ROOT / "cfg" / "models").rglob("*.yaml"):
|
| 222 |
-
if "rtdetr" in m.name:
|
| 223 |
-
if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first'
|
| 224 |
-
_ = RTDETR(m.name)(SOURCE, imgsz=640) # must be 640
|
| 225 |
-
else:
|
| 226 |
-
YOLO(m.name)
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
@pytest.mark.skipif(WINDOWS, reason="Windows slow CI export bug https://github.com/ultralytics/ultralytics/pull/16003")
|
| 230 |
-
def test_workflow():
|
| 231 |
-
"""Test the complete workflow including training, validation, prediction, and exporting."""
|
| 232 |
-
model = YOLO(MODEL)
|
| 233 |
-
model.train(data="coco8.yaml", epochs=1, imgsz=32, optimizer="SGD")
|
| 234 |
-
model.val(imgsz=32)
|
| 235 |
-
model.predict(SOURCE, imgsz=32)
|
| 236 |
-
model.export(format="torchscript") # WARNING: Windows slow CI export bug
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
def test_predict_callback_and_setup():
|
| 240 |
-
"""Test callback functionality during YOLO prediction setup and execution."""
|
| 241 |
-
|
| 242 |
-
def on_predict_batch_end(predictor):
|
| 243 |
-
"""Callback function that handles operations at the end of a prediction batch."""
|
| 244 |
-
path, im0s, _ = predictor.batch
|
| 245 |
-
im0s = im0s if isinstance(im0s, list) else [im0s]
|
| 246 |
-
bs = [predictor.dataset.bs for _ in range(len(path))]
|
| 247 |
-
predictor.results = zip(predictor.results, im0s, bs) # results is List[batch_size]
|
| 248 |
-
|
| 249 |
-
model = YOLO(MODEL)
|
| 250 |
-
model.add_callback("on_predict_batch_end", on_predict_batch_end)
|
| 251 |
-
|
| 252 |
-
dataset = load_inference_source(source=SOURCE)
|
| 253 |
-
bs = dataset.bs # noqa access predictor properties
|
| 254 |
-
results = model.predict(dataset, stream=True, imgsz=160) # source already setup
|
| 255 |
-
for r, im0, bs in results:
|
| 256 |
-
print("test_callback", im0.shape)
|
| 257 |
-
print("test_callback", bs)
|
| 258 |
-
boxes = r.boxes # Boxes object for bbox outputs
|
| 259 |
-
print(boxes)
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
@pytest.mark.parametrize("model", MODELS)
|
| 263 |
-
def test_results(model):
|
| 264 |
-
"""Ensure YOLO model predictions can be processed and printed in various formats."""
|
| 265 |
-
results = YOLO(WEIGHTS_DIR / model)([SOURCE, SOURCE], imgsz=160)
|
| 266 |
-
for r in results:
|
| 267 |
-
r = r.cpu().numpy()
|
| 268 |
-
print(r, len(r), r.path) # print numpy attributes
|
| 269 |
-
r = r.to(device="cpu", dtype=torch.float32)
|
| 270 |
-
r.save_txt(txt_file=TMP / "runs/tests/label.txt", save_conf=True)
|
| 271 |
-
r.save_crop(save_dir=TMP / "runs/tests/crops/")
|
| 272 |
-
r.to_json(normalize=True)
|
| 273 |
-
r.to_df(decimals=3)
|
| 274 |
-
r.to_csv()
|
| 275 |
-
r.to_xml()
|
| 276 |
-
r.plot(pil=True)
|
| 277 |
-
r.plot(conf=True, boxes=True)
|
| 278 |
-
print(r, len(r), r.path) # print after methods
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
def test_labels_and_crops():
|
| 282 |
-
"""Test output from prediction args for saving YOLO detection labels and crops; ensures accurate saving."""
|
| 283 |
-
imgs = [SOURCE, ASSETS / "zidane.jpg"]
|
| 284 |
-
results = YOLO(WEIGHTS_DIR / "yolo11n.pt")(imgs, imgsz=160, save_txt=True, save_crop=True)
|
| 285 |
-
save_path = Path(results[0].save_dir)
|
| 286 |
-
for r in results:
|
| 287 |
-
im_name = Path(r.path).stem
|
| 288 |
-
cls_idxs = r.boxes.cls.int().tolist()
|
| 289 |
-
# Check correct detections
|
| 290 |
-
assert cls_idxs == ([0, 7, 0, 0] if r.path.endswith("bus.jpg") else [0, 0, 0]) # bus.jpg and zidane.jpg classes
|
| 291 |
-
# Check label path
|
| 292 |
-
labels = save_path / f"labels/{im_name}.txt"
|
| 293 |
-
assert labels.exists()
|
| 294 |
-
# Check detections match label count
|
| 295 |
-
assert len(r.boxes.data) == len([line for line in labels.read_text().splitlines() if line])
|
| 296 |
-
# Check crops path and files
|
| 297 |
-
crop_dirs = list((save_path / "crops").iterdir())
|
| 298 |
-
crop_files = [f for p in crop_dirs for f in p.glob("*")]
|
| 299 |
-
# Crop directories match detections
|
| 300 |
-
assert all(r.names.get(c) in {d.name for d in crop_dirs} for c in cls_idxs)
|
| 301 |
-
# Same number of crops as detections
|
| 302 |
-
assert len([f for f in crop_files if im_name in f.name]) == len(r.boxes.data)
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
| 306 |
-
def test_data_utils():
|
| 307 |
-
"""Test utility functions in ultralytics/data/utils.py, including dataset stats and auto-splitting."""
|
| 308 |
-
from ultralytics.data.utils import HUBDatasetStats, autosplit
|
| 309 |
-
from ultralytics.utils.downloads import zip_directory
|
| 310 |
-
|
| 311 |
-
# from ultralytics.utils.files import WorkingDirectory
|
| 312 |
-
# with WorkingDirectory(ROOT.parent / 'tests'):
|
| 313 |
-
|
| 314 |
-
for task in TASKS:
|
| 315 |
-
file = Path(TASK2DATA[task]).with_suffix(".zip") # i.e. coco8.zip
|
| 316 |
-
download(f"https://github.com/ultralytics/hub/raw/main/example_datasets/{file}", unzip=False, dir=TMP)
|
| 317 |
-
stats = HUBDatasetStats(TMP / file, task=task)
|
| 318 |
-
stats.get_json(save=True)
|
| 319 |
-
stats.process_images()
|
| 320 |
-
|
| 321 |
-
autosplit(TMP / "coco8")
|
| 322 |
-
zip_directory(TMP / "coco8/images/val") # zip
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
| 326 |
-
def test_data_converter():
|
| 327 |
-
"""Test dataset conversion functions from COCO to YOLO format and class mappings."""
|
| 328 |
-
from ultralytics.data.converter import coco80_to_coco91_class, convert_coco
|
| 329 |
-
|
| 330 |
-
file = "instances_val2017.json"
|
| 331 |
-
download(f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{file}", dir=TMP)
|
| 332 |
-
convert_coco(labels_dir=TMP, save_dir=TMP / "yolo_labels", use_segments=True, use_keypoints=False, cls91to80=True)
|
| 333 |
-
coco80_to_coco91_class()
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
def test_data_annotator():
|
| 337 |
-
"""Automatically annotate data using specified detection and segmentation models."""
|
| 338 |
-
from ultralytics.data.annotator import auto_annotate
|
| 339 |
-
|
| 340 |
-
auto_annotate(
|
| 341 |
-
ASSETS,
|
| 342 |
-
det_model=WEIGHTS_DIR / "yolo11n.pt",
|
| 343 |
-
sam_model=WEIGHTS_DIR / "mobile_sam.pt",
|
| 344 |
-
output_dir=TMP / "auto_annotate_labels",
|
| 345 |
-
)
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
def test_events():
|
| 349 |
-
"""Test event sending functionality."""
|
| 350 |
-
from ultralytics.hub.utils import Events
|
| 351 |
-
|
| 352 |
-
events = Events()
|
| 353 |
-
events.enabled = True
|
| 354 |
-
cfg = copy(DEFAULT_CFG) # does not require deepcopy
|
| 355 |
-
cfg.mode = "test"
|
| 356 |
-
events(cfg)
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
def test_cfg_init():
|
| 360 |
-
"""Test configuration initialization utilities from the 'ultralytics.cfg' module."""
|
| 361 |
-
from ultralytics.cfg import check_dict_alignment, copy_default_cfg, smart_value
|
| 362 |
-
|
| 363 |
-
with contextlib.suppress(SyntaxError):
|
| 364 |
-
check_dict_alignment({"a": 1}, {"b": 2})
|
| 365 |
-
copy_default_cfg()
|
| 366 |
-
(Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")).unlink(missing_ok=False)
|
| 367 |
-
[smart_value(x) for x in ["none", "true", "false"]]
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
def test_utils_init():
|
| 371 |
-
"""Test initialization utilities in the Ultralytics library."""
|
| 372 |
-
from ultralytics.utils import get_git_branch, get_git_origin_url, get_ubuntu_version, is_github_action_running
|
| 373 |
-
|
| 374 |
-
get_ubuntu_version()
|
| 375 |
-
is_github_action_running()
|
| 376 |
-
get_git_origin_url()
|
| 377 |
-
get_git_branch()
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
def test_utils_checks():
|
| 381 |
-
"""Test various utility checks for filenames, git status, requirements, image sizes, and versions."""
|
| 382 |
-
checks.check_yolov5u_filename("yolov5n.pt")
|
| 383 |
-
checks.git_describe(ROOT)
|
| 384 |
-
checks.check_requirements() # check requirements.txt
|
| 385 |
-
checks.check_imgsz([600, 600], max_dim=1)
|
| 386 |
-
checks.check_imshow(warn=True)
|
| 387 |
-
checks.check_version("ultralytics", "8.0.0")
|
| 388 |
-
checks.print_args()
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
@pytest.mark.skipif(WINDOWS, reason="Windows profiling is extremely slow (cause unknown)")
|
| 392 |
-
def test_utils_benchmarks():
|
| 393 |
-
"""Benchmark model performance using 'ProfileModels' from 'ultralytics.utils.benchmarks'."""
|
| 394 |
-
from ultralytics.utils.benchmarks import ProfileModels
|
| 395 |
-
|
| 396 |
-
ProfileModels(["yolo11n.yaml"], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile()
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
def test_utils_torchutils():
|
| 400 |
-
"""Test Torch utility functions including profiling and FLOP calculations."""
|
| 401 |
-
from ultralytics.nn.modules.conv import Conv
|
| 402 |
-
from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile, time_sync
|
| 403 |
-
|
| 404 |
-
x = torch.randn(1, 64, 20, 20)
|
| 405 |
-
m = Conv(64, 64, k=1, s=2)
|
| 406 |
-
|
| 407 |
-
profile(x, [m], n=3)
|
| 408 |
-
get_flops_with_torch_profiler(m)
|
| 409 |
-
time_sync()
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
def test_utils_ops():
|
| 413 |
-
"""Test utility operations functions for coordinate transformation and normalization."""
|
| 414 |
-
from ultralytics.utils.ops import (
|
| 415 |
-
ltwh2xywh,
|
| 416 |
-
ltwh2xyxy,
|
| 417 |
-
make_divisible,
|
| 418 |
-
xywh2ltwh,
|
| 419 |
-
xywh2xyxy,
|
| 420 |
-
xywhn2xyxy,
|
| 421 |
-
xywhr2xyxyxyxy,
|
| 422 |
-
xyxy2ltwh,
|
| 423 |
-
xyxy2xywh,
|
| 424 |
-
xyxy2xywhn,
|
| 425 |
-
xyxyxyxy2xywhr,
|
| 426 |
-
)
|
| 427 |
-
|
| 428 |
-
make_divisible(17, torch.tensor([8]))
|
| 429 |
-
|
| 430 |
-
boxes = torch.rand(10, 4) # xywh
|
| 431 |
-
torch.allclose(boxes, xyxy2xywh(xywh2xyxy(boxes)))
|
| 432 |
-
torch.allclose(boxes, xyxy2xywhn(xywhn2xyxy(boxes)))
|
| 433 |
-
torch.allclose(boxes, ltwh2xywh(xywh2ltwh(boxes)))
|
| 434 |
-
torch.allclose(boxes, xyxy2ltwh(ltwh2xyxy(boxes)))
|
| 435 |
-
|
| 436 |
-
boxes = torch.rand(10, 5) # xywhr for OBB
|
| 437 |
-
boxes[:, 4] = torch.randn(10) * 30
|
| 438 |
-
torch.allclose(boxes, xyxyxyxy2xywhr(xywhr2xyxyxyxy(boxes)), rtol=1e-3)
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
def test_utils_files():
|
| 442 |
-
"""Test file handling utilities including file age, date, and paths with spaces."""
|
| 443 |
-
from ultralytics.utils.files import file_age, file_date, get_latest_run, spaces_in_path
|
| 444 |
-
|
| 445 |
-
file_age(SOURCE)
|
| 446 |
-
file_date(SOURCE)
|
| 447 |
-
get_latest_run(ROOT / "runs")
|
| 448 |
-
|
| 449 |
-
path = TMP / "path/with spaces"
|
| 450 |
-
path.mkdir(parents=True, exist_ok=True)
|
| 451 |
-
with spaces_in_path(path) as new_path:
|
| 452 |
-
print(new_path)
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
@pytest.mark.slow
|
| 456 |
-
def test_utils_patches_torch_save():
|
| 457 |
-
"""Test torch_save backoff when _torch_save raises RuntimeError to ensure robustness."""
|
| 458 |
-
from unittest.mock import MagicMock, patch
|
| 459 |
-
|
| 460 |
-
from ultralytics.utils.patches import torch_save
|
| 461 |
-
|
| 462 |
-
mock = MagicMock(side_effect=RuntimeError)
|
| 463 |
-
|
| 464 |
-
with patch("ultralytics.utils.patches._torch_save", new=mock):
|
| 465 |
-
with pytest.raises(RuntimeError):
|
| 466 |
-
torch_save(torch.zeros(1), TMP / "test.pt")
|
| 467 |
-
|
| 468 |
-
assert mock.call_count == 4, "torch_save was not attempted the expected number of times"
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
def test_nn_modules_conv():
|
| 472 |
-
"""Test Convolutional Neural Network modules including CBAM, Conv2, and ConvTranspose."""
|
| 473 |
-
from ultralytics.nn.modules.conv import CBAM, Conv2, ConvTranspose, DWConvTranspose2d, Focus
|
| 474 |
-
|
| 475 |
-
c1, c2 = 8, 16 # input and output channels
|
| 476 |
-
x = torch.zeros(4, c1, 10, 10) # BCHW
|
| 477 |
-
|
| 478 |
-
# Run all modules not otherwise covered in tests
|
| 479 |
-
DWConvTranspose2d(c1, c2)(x)
|
| 480 |
-
ConvTranspose(c1, c2)(x)
|
| 481 |
-
Focus(c1, c2)(x)
|
| 482 |
-
CBAM(c1)(x)
|
| 483 |
-
|
| 484 |
-
# Fuse ops
|
| 485 |
-
m = Conv2(c1, c2)
|
| 486 |
-
m.fuse_convs()
|
| 487 |
-
m(x)
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
def test_nn_modules_block():
|
| 491 |
-
"""Test various blocks in neural network modules including C1, C3TR, BottleneckCSP, C3Ghost, and C3x."""
|
| 492 |
-
from ultralytics.nn.modules.block import C1, C3TR, BottleneckCSP, C3Ghost, C3x
|
| 493 |
-
|
| 494 |
-
c1, c2 = 8, 16 # input and output channels
|
| 495 |
-
x = torch.zeros(4, c1, 10, 10) # BCHW
|
| 496 |
-
|
| 497 |
-
# Run all modules not otherwise covered in tests
|
| 498 |
-
C1(c1, c2)(x)
|
| 499 |
-
C3x(c1, c2)(x)
|
| 500 |
-
C3TR(c1, c2)(x)
|
| 501 |
-
C3Ghost(c1, c2)(x)
|
| 502 |
-
BottleneckCSP(c1, c2)(x)
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
| 506 |
-
def test_hub():
|
| 507 |
-
"""Test Ultralytics HUB functionalities (e.g. export formats, logout)."""
|
| 508 |
-
from ultralytics.hub import export_fmts_hub, logout
|
| 509 |
-
from ultralytics.hub.utils import smart_request
|
| 510 |
-
|
| 511 |
-
export_fmts_hub()
|
| 512 |
-
logout()
|
| 513 |
-
smart_request("GET", "https://github.com", progress=True)
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
@pytest.fixture
|
| 517 |
-
def image():
|
| 518 |
-
"""Load and return an image from a predefined source using OpenCV."""
|
| 519 |
-
return cv2.imread(str(SOURCE))
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
@pytest.mark.parametrize(
|
| 523 |
-
"auto_augment, erasing, force_color_jitter",
|
| 524 |
-
[
|
| 525 |
-
(None, 0.0, False),
|
| 526 |
-
("randaugment", 0.5, True),
|
| 527 |
-
("augmix", 0.2, False),
|
| 528 |
-
("autoaugment", 0.0, True),
|
| 529 |
-
],
|
| 530 |
-
)
|
| 531 |
-
def test_classify_transforms_train(image, auto_augment, erasing, force_color_jitter):
|
| 532 |
-
"""Tests classification transforms during training with various augmentations to ensure proper functionality."""
|
| 533 |
-
from ultralytics.data.augment import classify_augmentations
|
| 534 |
-
|
| 535 |
-
transform = classify_augmentations(
|
| 536 |
-
size=224,
|
| 537 |
-
mean=(0.5, 0.5, 0.5),
|
| 538 |
-
std=(0.5, 0.5, 0.5),
|
| 539 |
-
scale=(0.08, 1.0),
|
| 540 |
-
ratio=(3.0 / 4.0, 4.0 / 3.0),
|
| 541 |
-
hflip=0.5,
|
| 542 |
-
vflip=0.5,
|
| 543 |
-
auto_augment=auto_augment,
|
| 544 |
-
hsv_h=0.015,
|
| 545 |
-
hsv_s=0.4,
|
| 546 |
-
hsv_v=0.4,
|
| 547 |
-
force_color_jitter=force_color_jitter,
|
| 548 |
-
erasing=erasing,
|
| 549 |
-
)
|
| 550 |
-
|
| 551 |
-
transformed_image = transform(Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)))
|
| 552 |
-
|
| 553 |
-
assert transformed_image.shape == (3, 224, 224)
|
| 554 |
-
assert torch.is_tensor(transformed_image)
|
| 555 |
-
assert transformed_image.dtype == torch.float32
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
@pytest.mark.slow
|
| 559 |
-
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
|
| 560 |
-
def test_model_tune():
|
| 561 |
-
"""Tune YOLO model for performance improvement."""
|
| 562 |
-
YOLO("yolo11n-pose.pt").tune(data="coco8-pose.yaml", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu")
|
| 563 |
-
YOLO("yolo11n-cls.pt").tune(data="imagenet10", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu")
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
def test_model_embeddings():
|
| 567 |
-
"""Test YOLO model embeddings."""
|
| 568 |
-
model_detect = YOLO(MODEL)
|
| 569 |
-
model_segment = YOLO(WEIGHTS_DIR / "yolo11n-seg.pt")
|
| 570 |
-
|
| 571 |
-
for batch in [SOURCE], [SOURCE, SOURCE]: # test batch size 1 and 2
|
| 572 |
-
assert len(model_detect.embed(source=batch, imgsz=32)) == len(batch)
|
| 573 |
-
assert len(model_segment.embed(source=batch, imgsz=32)) == len(batch)
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="YOLOWorld with CLIP is not supported in Python 3.12")
|
| 577 |
-
def test_yolo_world():
|
| 578 |
-
"""Tests YOLO world models with CLIP support, including detection and training scenarios."""
|
| 579 |
-
model = YOLO(WEIGHTS_DIR / "yolov8s-world.pt") # no YOLO11n-world model yet
|
| 580 |
-
model.set_classes(["tree", "window"])
|
| 581 |
-
model(SOURCE, conf=0.01)
|
| 582 |
-
|
| 583 |
-
model = YOLO(WEIGHTS_DIR / "yolov8s-worldv2.pt") # no YOLO11n-world model yet
|
| 584 |
-
# Training from a pretrained model. Eval is included at the final stage of training.
|
| 585 |
-
# Use dota8.yaml which has fewer categories to reduce the inference time of CLIP model
|
| 586 |
-
model.train(
|
| 587 |
-
data="dota8.yaml",
|
| 588 |
-
epochs=1,
|
| 589 |
-
imgsz=32,
|
| 590 |
-
cache="disk",
|
| 591 |
-
close_mosaic=1,
|
| 592 |
-
)
|
| 593 |
-
|
| 594 |
-
# test WorWorldTrainerFromScratch
|
| 595 |
-
from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
|
| 596 |
-
|
| 597 |
-
model = YOLO("yolov8s-worldv2.yaml") # no YOLO11n-world model yet
|
| 598 |
-
model.train(
|
| 599 |
-
data={"train": {"yolo_data": ["dota8.yaml"]}, "val": {"yolo_data": ["dota8.yaml"]}},
|
| 600 |
-
epochs=1,
|
| 601 |
-
imgsz=32,
|
| 602 |
-
cache="disk",
|
| 603 |
-
close_mosaic=1,
|
| 604 |
-
trainer=WorldTrainerFromScratch,
|
| 605 |
-
)
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
def test_yolov10():
|
| 609 |
-
"""Test YOLOv10 model training, validation, and prediction steps with minimal configurations."""
|
| 610 |
-
model = YOLO("yolov10n.yaml")
|
| 611 |
-
# train/val/predict
|
| 612 |
-
model.train(data="coco8.yaml", epochs=1, imgsz=32, close_mosaic=1, cache="disk")
|
| 613 |
-
model.val(data="coco8.yaml", imgsz=32)
|
| 614 |
-
model.predict(imgsz=32, save_txt=True, save_crop=True, augment=True)
|
| 615 |
-
model(SOURCE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/test_solutions.py
DELETED
|
@@ -1,94 +0,0 @@
|
|
| 1 |
-
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
| 2 |
-
|
| 3 |
-
import cv2
|
| 4 |
-
import pytest
|
| 5 |
-
|
| 6 |
-
from tests import TMP
|
| 7 |
-
from ultralytics import YOLO, solutions
|
| 8 |
-
from ultralytics.utils import ASSETS_URL, WEIGHTS_DIR
|
| 9 |
-
from ultralytics.utils.downloads import safe_download
|
| 10 |
-
|
| 11 |
-
DEMO_VIDEO = "solutions_ci_demo.mp4"
|
| 12 |
-
POSE_VIDEO = "solution_ci_pose_demo.mp4"
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
@pytest.mark.slow
|
| 16 |
-
def test_major_solutions():
|
| 17 |
-
"""Test the object counting, heatmap, speed estimation, trackzone and queue management solution."""
|
| 18 |
-
safe_download(url=f"{ASSETS_URL}/{DEMO_VIDEO}", dir=TMP)
|
| 19 |
-
cap = cv2.VideoCapture(str(TMP / DEMO_VIDEO))
|
| 20 |
-
assert cap.isOpened(), "Error reading video file"
|
| 21 |
-
region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360)]
|
| 22 |
-
counter = solutions.ObjectCounter(region=region_points, model="yolo11n.pt", show=False) # Test object counter
|
| 23 |
-
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, model="yolo11n.pt", show=False) # Test heatmaps
|
| 24 |
-
heatmap_count = solutions.Heatmap(
|
| 25 |
-
colormap=cv2.COLORMAP_PARULA, model="yolo11n.pt", show=False, region=region_points
|
| 26 |
-
) # Test heatmaps with object counting
|
| 27 |
-
speed = solutions.SpeedEstimator(region=region_points, model="yolo11n.pt", show=False) # Test queue manager
|
| 28 |
-
queue = solutions.QueueManager(region=region_points, model="yolo11n.pt", show=False) # Test speed estimation
|
| 29 |
-
line_analytics = solutions.Analytics(analytics_type="line", model="yolo11n.pt", show=False) # line analytics
|
| 30 |
-
pie_analytics = solutions.Analytics(analytics_type="pie", model="yolo11n.pt", show=False) # line analytics
|
| 31 |
-
bar_analytics = solutions.Analytics(analytics_type="bar", model="yolo11n.pt", show=False) # line analytics
|
| 32 |
-
area_analytics = solutions.Analytics(analytics_type="area", model="yolo11n.pt", show=False) # line analytics
|
| 33 |
-
trackzone = solutions.TrackZone(region=region_points, model="yolo11n.pt", show=False) # Test trackzone
|
| 34 |
-
frame_count = 0 # Required for analytics
|
| 35 |
-
while cap.isOpened():
|
| 36 |
-
success, im0 = cap.read()
|
| 37 |
-
if not success:
|
| 38 |
-
break
|
| 39 |
-
frame_count += 1
|
| 40 |
-
original_im0 = im0.copy()
|
| 41 |
-
_ = counter.count(original_im0.copy())
|
| 42 |
-
_ = heatmap.generate_heatmap(original_im0.copy())
|
| 43 |
-
_ = heatmap_count.generate_heatmap(original_im0.copy())
|
| 44 |
-
_ = speed.estimate_speed(original_im0.copy())
|
| 45 |
-
_ = queue.process_queue(original_im0.copy())
|
| 46 |
-
_ = line_analytics.process_data(original_im0.copy(), frame_count)
|
| 47 |
-
_ = pie_analytics.process_data(original_im0.copy(), frame_count)
|
| 48 |
-
_ = bar_analytics.process_data(original_im0.copy(), frame_count)
|
| 49 |
-
_ = area_analytics.process_data(original_im0.copy(), frame_count)
|
| 50 |
-
_ = trackzone.trackzone(original_im0.copy())
|
| 51 |
-
cap.release()
|
| 52 |
-
|
| 53 |
-
# Test workouts monitoring
|
| 54 |
-
safe_download(url=f"{ASSETS_URL}/{POSE_VIDEO}", dir=TMP)
|
| 55 |
-
cap = cv2.VideoCapture(str(TMP / POSE_VIDEO))
|
| 56 |
-
assert cap.isOpened(), "Error reading video file"
|
| 57 |
-
gym = solutions.AIGym(kpts=[5, 11, 13], show=False)
|
| 58 |
-
while cap.isOpened():
|
| 59 |
-
success, im0 = cap.read()
|
| 60 |
-
if not success:
|
| 61 |
-
break
|
| 62 |
-
_ = gym.monitor(im0)
|
| 63 |
-
cap.release()
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
@pytest.mark.slow
|
| 67 |
-
def test_instance_segmentation():
|
| 68 |
-
"""Test the instance segmentation solution."""
|
| 69 |
-
from ultralytics.utils.plotting import Annotator, colors
|
| 70 |
-
|
| 71 |
-
model = YOLO(WEIGHTS_DIR / "yolo11n-seg.pt")
|
| 72 |
-
names = model.names
|
| 73 |
-
cap = cv2.VideoCapture(TMP / DEMO_VIDEO)
|
| 74 |
-
assert cap.isOpened(), "Error reading video file"
|
| 75 |
-
while cap.isOpened():
|
| 76 |
-
success, im0 = cap.read()
|
| 77 |
-
if not success:
|
| 78 |
-
break
|
| 79 |
-
results = model.predict(im0)
|
| 80 |
-
annotator = Annotator(im0, line_width=2)
|
| 81 |
-
if results[0].masks is not None:
|
| 82 |
-
clss = results[0].boxes.cls.cpu().tolist()
|
| 83 |
-
masks = results[0].masks.xy
|
| 84 |
-
for mask, cls in zip(masks, clss):
|
| 85 |
-
color = colors(int(cls), True)
|
| 86 |
-
annotator.seg_bbox(mask=mask, mask_color=color, label=names[int(cls)])
|
| 87 |
-
cap.release()
|
| 88 |
-
cv2.destroyAllWindows()
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
@pytest.mark.slow
|
| 92 |
-
def test_streamlit_predict():
|
| 93 |
-
"""Test streamlit predict live inference solution."""
|
| 94 |
-
solutions.Inference().inference()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|