Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from transformers import pipeline as pip | |
| from PIL import Image | |
| # set page setting | |
| st.set_page_config(page_title='Smoke & Fire Detection') | |
| # set history var | |
| if 'history' not in st.session_state: | |
| st.session_state.history = [] | |
| def loadModel(): | |
| pipeline = pip(task="image-classification", model="EdBianchi/vit-fire-detection") | |
| return pipeline | |
| # PROCESSING | |
| def compute(image): | |
| predictions = pipeline(image) | |
| with st.container(): | |
| st.image(image, use_column_width=True) | |
| with st.container(): | |
| st.write("#### Different classification outputs at different threshold values:") | |
| col1, col2, col6 = st.columns(3) | |
| col1.metric(predictions[0]['label'], round(predictions[0]['score']+100, 1)+"%") | |
| col2.metric(predictions[1]['label'], round(predictions[1]['score']+100, 1)+"%") | |
| col6.metric(predictions[2]['label'], round(predictions[2]['score']+100, 1)+"%") | |
| return None | |
| # INIT | |
| with st.spinner('Loading the model, this could take some time...'): | |
| pipeline = loadModel() | |
| # TITLE | |
| st.write("# Smoke & Fire Detection in Forest Environments") | |
| st.write("#### Upload an Image to see the classifier in action") | |
| # INPUT IMAGE | |
| file_name = st.file_uploader("Upload an image") | |
| if file_name is not None: | |
| image = Image.open(file_name) | |
| compute(image) | |
| # SIDEBAR | |
| #st.sidebar.write("""""") |