video-caption / app.py
John Ho
added function to read fps
4fa18d9
raw
history blame
3.69 kB
import spaces, ffmpeg, os
import gradio as gr
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from loguru import logger
logger.remove()
logger.add(
sys.stderr,
format="<d>{time:YYYY-MM-DD ddd HH:mm:ss}</d> | <lvl>{level}</lvl> | <lvl>{message}</lvl>",
)
# --- Installing Flash Attention for ZeroGPU is special --- #
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
# --- now we got Flash Attention ---#
# The model is trained on 8.0 FPS which we recommend for optimal inference
def get_fps_ffmpeg(video_path: str):
probe = ffmpeg.probe(video_path)
# Find the first video stream
video_stream = next(
(stream for stream in probe["streams"] if stream["codec_type"] == "video"), None
)
if video_stream is None:
raise ValueError("No video stream found")
# Frame rate is given as a string fraction, e.g., '30000/1001'
r_frame_rate = video_stream["r_frame_rate"]
num, denom = map(int, r_frame_rate.split("/"))
return num / denom
@spaces.GPU(duration=30)
def load_model(
model_name: str = "chancharikm/qwen2.5-vl-7b-cam-motion-preview",
use_flash_attention: bool = True,
):
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
model = (
Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="cuda",
)
if use_flash_attention
else Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_name,
torch_dtype="auto",
device_map="cuda",
)
)
return model
@spaces.GPU(duration=120)
def inference(
video_path: str, prompt: str = "Describe the camera motion in this video."
):
# default processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
fps = get_fps_ffmpeg(video_path)
logger.info(f"{os.path.basename(video_path)} FPS: {fps}")
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": video_path,
"fps": fps,
},
{"type": "text", "text": prompt},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs, video_kwargs = process_vision_info(
messages, return_video_kwargs=True
)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
fps=fps,
padding=True,
return_tensors="pt",
**video_kwargs,
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
return output_text
demo = gr.Interface(
fn=inference,
inputs=[
gr.Video(label="Input Video"),
],
outputs=gr.JSON(label="Output JSON"),
title="",
api_name="video_inference",
)
demo.launch(
mcp_server=True, app_kwargs={"docs_url": "/docs"} # add FastAPI Swagger API Docs
)