Spaces:
Runtime error
Runtime error
| import spaces | |
| import torch | |
| import re | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from PIL import Image | |
| if torch.cuda.is_available(): | |
| device, dtype = "cuda", torch.float16 | |
| else: | |
| device, dtype = "cpu", torch.float32 | |
| model_id = "vikhyatk/moondream2" | |
| revision = "2024-08-26" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) | |
| moondream = AutoModelForCausalLM.from_pretrained( | |
| model_id, trust_remote_code=True, revision=revision, torch_dtype=dtype | |
| ).to(device=device) | |
| moondream.eval() | |
| def answer_questions(image_tuples, prompt_text): | |
| result = "" | |
| Q_and_A = "" | |
| prompts = [p.strip() for p in prompt_text.split(',')] | |
| image_embeds = [img[0] for img in image_tuples if img[0] is not None] | |
| #print(f"\nprompts: {prompts}\n\n") | |
| answers = [] | |
| for prompt in prompts: | |
| image_answers = moondream.batch_answer( | |
| images=[img.convert("RGB") for img in image_embeds], | |
| prompts=[prompt] * len(image_embeds), | |
| tokenizer=tokenizer, | |
| ) | |
| answers.append(image_answers) | |
| for i, prompt in enumerate(prompts): | |
| Q_and_A += f"### Q: {prompt}\n" | |
| for j, image_tuple in enumerate(image_tuples): | |
| image_name = f"image{j+1}" | |
| answer_text = answers[i][j] | |
| Q_and_A += f"**{image_name} A:** \n {answer_text} \n\n" | |
| result = {'headers': prompts, 'data': answers} | |
| #print(f"result\n{result}\n\nQ_and_A\n{Q_and_A}\n\n") | |
| return Q_and_A, result | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# MoonDream WebUI") | |
| gr.Markdown("## π WebUI is modify by https://huggingface.co/spaces/Csplk/moondream2-batch-processing") | |
| gr.Markdown("## π moondream2 - A tiny vision language model. [GitHub](https://github.com/vikhyatk/moondream)") | |
| with gr.Row(): | |
| img = gr.Gallery(label="Upload Images", type="pil", preview=True, columns=4) | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts (one prompt for each image provided) separated by commas. Ex: Describe this image, What is in this image?", lines=8) | |
| with gr.Row(): | |
| submit = gr.Button("Submit") | |
| with gr.Row(): | |
| output = gr.Markdown(label="Questions and Answers", line_breaks=True) | |
| with gr.Row(): | |
| output2 = gr.Dataframe(label="Structured Dataframe", type="array", wrap=True) | |
| submit.click(answer_questions, [img, prompt], [output, output2]) | |
| demo.queue().launch() | |