Update services/podcast_generator_service.py
Browse files- services/podcast_generator_service.py +294 -247
services/podcast_generator_service.py
CHANGED
|
@@ -1,12 +1,10 @@
|
|
| 1 |
import logging
|
| 2 |
-
import asyncio
|
| 3 |
-
import json
|
| 4 |
-
import uuid
|
| 5 |
from typing import List, Dict, Any, Optional
|
| 6 |
from dataclasses import dataclass, asdict
|
| 7 |
from datetime import datetime
|
| 8 |
from pathlib import Path
|
| 9 |
import re
|
|
|
|
| 10 |
|
| 11 |
try:
|
| 12 |
from elevenlabs import VoiceSettings
|
|
@@ -18,15 +16,16 @@ except ImportError:
|
|
| 18 |
import config
|
| 19 |
from services.llamaindex_service import LlamaIndexService
|
| 20 |
from services.llm_service import LLMService
|
|
|
|
| 21 |
|
| 22 |
logger = logging.getLogger(__name__)
|
| 23 |
|
| 24 |
@dataclass
|
| 25 |
class DocumentAnalysis:
|
| 26 |
"""Analysis results from document(s)"""
|
| 27 |
-
key_insights: List[str]
|
| 28 |
topics: List[str]
|
| 29 |
-
complexity_level: str
|
| 30 |
estimated_words: int
|
| 31 |
source_documents: List[str]
|
| 32 |
summary: str
|
|
@@ -34,10 +33,10 @@ class DocumentAnalysis:
|
|
| 34 |
@dataclass
|
| 35 |
class DialogueLine:
|
| 36 |
"""Single line of podcast dialogue"""
|
| 37 |
-
speaker: str
|
| 38 |
text: str
|
| 39 |
-
pause_after: float = 0.5
|
| 40 |
-
|
| 41 |
@dataclass
|
| 42 |
class PodcastScript:
|
| 43 |
"""Complete podcast script"""
|
|
@@ -47,7 +46,6 @@ class PodcastScript:
|
|
| 47 |
style: str
|
| 48 |
|
| 49 |
def to_text(self) -> str:
|
| 50 |
-
"""Convert to readable transcript"""
|
| 51 |
lines = []
|
| 52 |
for line in self.dialogue:
|
| 53 |
lines.append(f"{line.speaker}: {line.text}")
|
|
@@ -83,98 +81,94 @@ class PodcastResult:
|
|
| 83 |
class PodcastGeneratorService:
|
| 84 |
"""
|
| 85 |
Service for generating conversational podcasts from documents.
|
| 86 |
-
Combines LlamaIndex for analysis and ElevenLabs for voice synthesis.
|
| 87 |
"""
|
| 88 |
|
| 89 |
-
# Word count per minute for podcast pacing
|
| 90 |
WORDS_PER_MINUTE = 150
|
| 91 |
|
| 92 |
-
# Script generation prompts for different styles
|
| 93 |
SCRIPT_PROMPTS = {
|
| 94 |
-
"conversational": """You are an expert podcast script writer. Create an engaging 2-host podcast discussing
|
| 95 |
|
| 96 |
-
|
| 97 |
-
{
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
REQUIREMENTS:
|
| 100 |
- Duration: {duration_minutes} minutes (approximately {word_count} words)
|
| 101 |
- Style: Conversational, friendly, and accessible
|
| 102 |
- Format: Alternating dialogue between HOST1 and HOST2
|
| 103 |
-
-
|
| 104 |
-
-
|
| 105 |
-
- Add enthusiasm and genuine curiosity
|
| 106 |
-
- Balance speaking time between both hosts
|
| 107 |
|
| 108 |
DIALOGUE FORMAT (strictly follow):
|
| 109 |
HOST1: [What they say]
|
| 110 |
HOST2: [What they say]
|
| 111 |
|
| 112 |
STRUCTURE:
|
| 113 |
-
1. Opening Hook (30 seconds): Grab attention
|
| 114 |
-
2. Introduction (1 minute): Set context
|
| 115 |
-
3. Main Discussion (70% of time): Deep dive into
|
| 116 |
-
4. Wrap-up (1 minute): Summarize key takeaways
|
| 117 |
-
|
| 118 |
-
TONE: Friendly, enthusiastic, educational but not condescending
|
| 119 |
|
| 120 |
Generate the complete podcast script now:""",
|
| 121 |
|
| 122 |
-
"educational": """
|
| 123 |
|
| 124 |
-
|
| 125 |
-
{
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
REQUIREMENTS:
|
| 128 |
- Duration: {duration_minutes} minutes (approximately {word_count} words)
|
| 129 |
- Style: Clear, methodical, educational
|
| 130 |
-
- HOST1 acts as
|
| 131 |
-
- Include explanations of complex concepts
|
| 132 |
-
- Use examples and analogies
|
| 133 |
-
- Build knowledge progressively
|
| 134 |
|
| 135 |
DIALOGUE FORMAT:
|
| 136 |
HOST1: [Expert explanation]
|
| 137 |
-
HOST2: [Clarifying question
|
| 138 |
|
| 139 |
-
Generate the
|
| 140 |
|
| 141 |
-
"technical": """
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
-
{
|
| 145 |
|
| 146 |
REQUIREMENTS:
|
| 147 |
- Duration: {duration_minutes} minutes (approximately {word_count} words)
|
| 148 |
- Style: Professional, detailed, technically accurate
|
| 149 |
-
- HOST1 is
|
| 150 |
-
- Use proper technical terminology
|
| 151 |
-
- Dive into implementation details
|
| 152 |
-
- Discuss implications and applications
|
| 153 |
|
| 154 |
DIALOGUE FORMAT:
|
| 155 |
HOST1: [Technical insight]
|
| 156 |
HOST2: [Probing question]
|
| 157 |
|
| 158 |
-
Generate the
|
| 159 |
|
| 160 |
-
"casual": """
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
-
|
| 163 |
-
{
|
| 164 |
|
| 165 |
REQUIREMENTS:
|
| 166 |
- Duration: {duration_minutes} minutes (approximately {word_count} words)
|
| 167 |
- Style: Relaxed, humorous, energetic
|
| 168 |
-
-
|
| 169 |
-
- Use casual language and occasional humor
|
| 170 |
-
- Make it entertaining while staying informative
|
| 171 |
-
- Quick pacing with energy
|
| 172 |
|
| 173 |
DIALOGUE FORMAT:
|
| 174 |
HOST1: [Casual commentary]
|
| 175 |
HOST2: [Enthusiastic response]
|
| 176 |
|
| 177 |
-
Generate the
|
| 178 |
}
|
| 179 |
|
| 180 |
def __init__(
|
|
@@ -183,18 +177,13 @@ Generate the complete casual podcast script now:"""
|
|
| 183 |
llm_service: LLMService,
|
| 184 |
elevenlabs_api_key: Optional[str] = None
|
| 185 |
):
|
| 186 |
-
"""
|
| 187 |
-
Initialize podcast generator service
|
| 188 |
-
|
| 189 |
-
Args:
|
| 190 |
-
llamaindex_service: Service for document analysis
|
| 191 |
-
llm_service: Service for script generation
|
| 192 |
-
elevenlabs_api_key: ElevenLabs API key (uses config if not provided)
|
| 193 |
-
"""
|
| 194 |
self.config = config.config
|
| 195 |
self.llamaindex_service = llamaindex_service
|
| 196 |
self.llm_service = llm_service
|
| 197 |
|
|
|
|
|
|
|
|
|
|
| 198 |
# Initialize ElevenLabs client
|
| 199 |
self.elevenlabs_client = None
|
| 200 |
if ELEVENLABS_AVAILABLE:
|
|
@@ -213,10 +202,14 @@ Generate the complete casual podcast script now:"""
|
|
| 213 |
# Metadata database file
|
| 214 |
self.metadata_file = self.podcast_dir / "metadata_db.json"
|
| 215 |
self._ensure_metadata_db()
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
def _ensure_metadata_db(self):
|
| 218 |
"""Ensure metadata database exists"""
|
| 219 |
if not self.metadata_file.exists():
|
|
|
|
| 220 |
self.metadata_file.write_text(json.dumps([], indent=2))
|
| 221 |
|
| 222 |
async def generate_podcast(
|
|
@@ -227,19 +220,7 @@ Generate the complete casual podcast script now:"""
|
|
| 227 |
host1_voice: str = "Rachel",
|
| 228 |
host2_voice: str = "Adam"
|
| 229 |
) -> PodcastResult:
|
| 230 |
-
"""
|
| 231 |
-
Generate a complete podcast from documents
|
| 232 |
-
|
| 233 |
-
Args:
|
| 234 |
-
document_ids: List of document IDs to analyze
|
| 235 |
-
style: Podcast style (conversational, educational, technical, casual)
|
| 236 |
-
duration_minutes: Target duration in minutes
|
| 237 |
-
host1_voice: Voice name for first host
|
| 238 |
-
host2_voice: Voice name for second host
|
| 239 |
-
|
| 240 |
-
Returns:
|
| 241 |
-
PodcastResult with audio file path and metadata
|
| 242 |
-
"""
|
| 243 |
start_time = datetime.now()
|
| 244 |
podcast_id = str(uuid.uuid4())
|
| 245 |
|
|
@@ -247,8 +228,8 @@ Generate the complete casual podcast script now:"""
|
|
| 247 |
logger.info(f"Starting podcast generation {podcast_id}")
|
| 248 |
logger.info(f"Documents: {document_ids}, Style: {style}, Duration: {duration_minutes}min")
|
| 249 |
|
| 250 |
-
# Step 1:
|
| 251 |
-
logger.info("Step 1:
|
| 252 |
analysis = await self.analyze_documents(document_ids)
|
| 253 |
|
| 254 |
# Step 2: Generate script
|
|
@@ -311,57 +292,133 @@ Generate the complete casual podcast script now:"""
|
|
| 311 |
|
| 312 |
async def analyze_documents(self, document_ids: List[str]) -> DocumentAnalysis:
|
| 313 |
"""
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
Args:
|
| 317 |
-
document_ids: List of document IDs
|
| 318 |
|
| 319 |
-
|
| 320 |
-
DocumentAnalysis with key insights and topics
|
| 321 |
"""
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
2. Main themes and topics covered
|
| 326 |
3. The overall complexity level (beginner/intermediate/advanced)
|
| 327 |
-
4. A
|
| 328 |
|
| 329 |
-
|
|
|
|
| 330 |
|
| 331 |
-
Provide a structured analysis optimized for creating an engaging podcast discussion.
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
|
| 351 |
def _extract_insights(self, text: str) -> List[str]:
|
| 352 |
"""Extract key insights from analysis text"""
|
| 353 |
insights = []
|
| 354 |
-
#Simple extraction based on numbered lists or bullet points
|
| 355 |
lines = text.split('\n')
|
|
|
|
|
|
|
| 356 |
for line in lines:
|
| 357 |
line = line.strip()
|
| 358 |
-
|
| 359 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
insight = re.sub(r'^\d+\.|\-|\*|•', '', line).strip()
|
| 361 |
-
if len(insight) > 20:
|
| 362 |
insights.append(insight)
|
| 363 |
|
| 364 |
-
#
|
| 365 |
if not insights:
|
| 366 |
sentences = text.split('.')
|
| 367 |
insights = [s.strip() + '.' for s in sentences[:7] if len(s.strip()) > 20]
|
|
@@ -370,25 +427,50 @@ Provide a structured analysis optimized for creating an engaging podcast discuss
|
|
| 370 |
|
| 371 |
def _extract_topics(self, text: str) -> List[str]:
|
| 372 |
"""Extract main topics from analysis"""
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
if
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
|
| 387 |
def _determine_complexity(self, text: str) -> str:
|
| 388 |
"""Determine content complexity level"""
|
| 389 |
text_lower = text.lower()
|
| 390 |
|
| 391 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
if any(word in text_lower for word in ['basic', 'introduction', 'beginner', 'simple']):
|
| 393 |
return "beginner"
|
| 394 |
elif any(word in text_lower for word in ['advanced', 'complex', 'sophisticated', 'expert']):
|
|
@@ -402,59 +484,42 @@ Provide a structured analysis optimized for creating an engaging podcast discuss
|
|
| 402 |
style: str,
|
| 403 |
duration_minutes: int
|
| 404 |
) -> PodcastScript:
|
| 405 |
-
"""
|
| 406 |
-
Generate podcast script from analysis
|
| 407 |
-
|
| 408 |
-
Args:
|
| 409 |
-
analysis: Document analysis results
|
| 410 |
-
style: Podcast style
|
| 411 |
-
duration_minutes: Target duration
|
| 412 |
-
|
| 413 |
-
Returns:
|
| 414 |
-
Complete podcast script
|
| 415 |
-
"""
|
| 416 |
-
# Calculate target word count
|
| 417 |
target_words = duration_minutes * self.WORDS_PER_MINUTE
|
| 418 |
|
| 419 |
-
# Prepare
|
| 420 |
-
|
| 421 |
-
KEY INSIGHTS:
|
| 422 |
-
{chr(10).join(f"{i+1}. {insight}" for i, insight in enumerate(analysis.key_insights))}
|
| 423 |
-
|
| 424 |
-
TOPICS: {', '.join(analysis.topics)}
|
| 425 |
-
COMPLEXITY: {analysis.complexity_level}
|
| 426 |
-
|
| 427 |
-
SUMMARY:
|
| 428 |
-
{analysis.summary[:500]}...
|
| 429 |
-
"""
|
| 430 |
|
| 431 |
-
# Get prompt template
|
| 432 |
prompt_template = self.SCRIPT_PROMPTS.get(style, self.SCRIPT_PROMPTS["conversational"])
|
| 433 |
|
| 434 |
-
# Fill
|
| 435 |
prompt = prompt_template.format(
|
| 436 |
-
analysis
|
|
|
|
| 437 |
duration_minutes=duration_minutes,
|
| 438 |
word_count=target_words
|
| 439 |
)
|
| 440 |
|
| 441 |
-
# Generate script
|
| 442 |
script_text = await self.llm_service.generate_text(
|
| 443 |
prompt,
|
| 444 |
-
max_tokens=target_words * 2,
|
| 445 |
-
temperature=0.8
|
| 446 |
)
|
| 447 |
|
| 448 |
-
# Parse
|
| 449 |
dialogue = self._parse_script(script_text)
|
| 450 |
|
| 451 |
-
|
|
|
|
|
|
|
| 452 |
word_count = sum(len(line.text.split()) for line in dialogue)
|
| 453 |
duration_estimate = word_count / self.WORDS_PER_MINUTE
|
| 454 |
|
| 455 |
return PodcastScript(
|
| 456 |
dialogue=dialogue,
|
| 457 |
-
total_duration_estimate=duration_estimate * 60,
|
| 458 |
word_count=word_count,
|
| 459 |
style=style
|
| 460 |
)
|
|
@@ -469,7 +534,6 @@ SUMMARY:
|
|
| 469 |
if not line:
|
| 470 |
continue
|
| 471 |
|
| 472 |
-
# Match "HOST1:" or "HOST2:" format
|
| 473 |
if line.startswith('HOST1:'):
|
| 474 |
text = line[6:].strip()
|
| 475 |
if text:
|
|
@@ -482,43 +546,34 @@ SUMMARY:
|
|
| 482 |
return dialogue
|
| 483 |
|
| 484 |
def _get_voice_id(self, voice_name: str) -> str:
|
| 485 |
-
"""
|
| 486 |
-
Get voice ID from voice name.
|
| 487 |
-
Falls back to first available voice if not found.
|
| 488 |
-
|
| 489 |
-
Args:
|
| 490 |
-
voice_name: Voice name (e.g., "Rachel", "Adam")
|
| 491 |
-
|
| 492 |
-
Returns:
|
| 493 |
-
Voice ID string
|
| 494 |
-
"""
|
| 495 |
try:
|
| 496 |
-
#
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
#
|
| 510 |
-
for
|
| 511 |
-
if voice_name.lower() in
|
| 512 |
-
logger.info(f"
|
| 513 |
-
return
|
| 514 |
-
|
| 515 |
-
#
|
| 516 |
-
|
| 517 |
-
logger.warning(f"Voice '{voice_name}' not found, using
|
| 518 |
-
return
|
| 519 |
|
| 520 |
except Exception as e:
|
| 521 |
-
logger.error(f"Could not fetch voices: {e}"
|
| 522 |
raise RuntimeError(f"Failed to get voice ID: {str(e)}")
|
| 523 |
|
| 524 |
async def synthesize_audio(
|
|
@@ -528,60 +583,63 @@ SUMMARY:
|
|
| 528 |
host1_voice: str,
|
| 529 |
host2_voice: str
|
| 530 |
) -> Path:
|
| 531 |
-
"""
|
| 532 |
-
Synthesize audio from script using ElevenLabs
|
| 533 |
-
|
| 534 |
-
Args:
|
| 535 |
-
podcast_id: Unique podcast ID
|
| 536 |
-
script: Podcast script
|
| 537 |
-
host1_voice: Voice for HOST1
|
| 538 |
-
host2_voice: Voice for HOST2
|
| 539 |
-
|
| 540 |
-
Returns:
|
| 541 |
-
Path to generated MP3 file
|
| 542 |
-
"""
|
| 543 |
if not self.elevenlabs_client:
|
| 544 |
raise RuntimeError("ElevenLabs client not initialized")
|
| 545 |
|
| 546 |
audio_file = self.podcast_dir / f"{podcast_id}.mp3"
|
| 547 |
|
| 548 |
-
# For now, create a simple text-to-speech for the full script
|
| 549 |
-
# In production, you'd combine segments with pauses
|
| 550 |
-
full_text = script.to_text()
|
| 551 |
-
|
| 552 |
-
# Get actual voice ID
|
| 553 |
-
voice_id = self._get_voice_id(host1_voice)
|
| 554 |
-
|
| 555 |
try:
|
| 556 |
-
#
|
| 557 |
-
|
| 558 |
-
|
| 559 |
|
| 560 |
-
logger.info(f"
|
| 561 |
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
model_id="eleven_multilingual_v2"
|
| 567 |
-
)
|
| 568 |
|
| 569 |
-
|
| 570 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 571 |
for chunk in audio_generator:
|
| 572 |
if chunk:
|
| 573 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 574 |
|
| 575 |
-
# Verify file was created with content
|
| 576 |
if audio_file.exists() and audio_file.stat().st_size > 1000:
|
| 577 |
-
logger.info(f"Audio
|
| 578 |
return audio_file
|
| 579 |
else:
|
| 580 |
-
raise RuntimeError(
|
| 581 |
|
| 582 |
except Exception as e:
|
| 583 |
logger.error(f"Audio synthesis failed: {e}", exc_info=True)
|
| 584 |
-
raise RuntimeError(f"Failed to generate
|
| 585 |
|
| 586 |
def _create_metadata(
|
| 587 |
self,
|
|
@@ -594,28 +652,22 @@ SUMMARY:
|
|
| 594 |
style: str
|
| 595 |
) -> PodcastMetadata:
|
| 596 |
"""Create podcast metadata"""
|
| 597 |
-
# Auto-generate title
|
| 598 |
title = f"Podcast: {analysis.topics[0] if analysis.topics else 'Document Discussion'}"
|
| 599 |
-
|
| 600 |
-
# Create description
|
| 601 |
-
description = f"A {style} podcast discussing insights from {len(document_ids)} document(s)."
|
| 602 |
-
|
| 603 |
-
# Calculate file size
|
| 604 |
file_size_mb = audio_path.stat().st_size / (1024 * 1024) if audio_path.exists() else 0
|
| 605 |
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
tts_cost = (script.word_count * 5 / 1000) * 0.30 # Rough estimate
|
| 609 |
|
| 610 |
return PodcastMetadata(
|
| 611 |
podcast_id=podcast_id,
|
| 612 |
title=title,
|
| 613 |
description=description,
|
| 614 |
-
source_documents=
|
| 615 |
style=style,
|
| 616 |
duration_seconds=script.total_duration_estimate,
|
| 617 |
file_size_mb=file_size_mb,
|
| 618 |
-
voices={"host1": list(voices)[0] if len(voices) > 0 else "Rachel",
|
| 619 |
"host2": list(voices)[1] if len(voices) > 1 else "Adam"},
|
| 620 |
generated_at=datetime.now().isoformat(),
|
| 621 |
generation_cost={"llm_cost": llm_cost, "tts_cost": tts_cost, "total": llm_cost + tts_cost},
|
|
@@ -625,26 +677,21 @@ SUMMARY:
|
|
| 625 |
def _save_metadata(self, metadata: PodcastMetadata):
|
| 626 |
"""Save metadata to database"""
|
| 627 |
try:
|
| 628 |
-
|
| 629 |
existing = json.loads(self.metadata_file.read_text())
|
| 630 |
-
|
| 631 |
-
# Add new metadata
|
| 632 |
existing.append(asdict(metadata))
|
| 633 |
-
|
| 634 |
-
# Save back
|
| 635 |
self.metadata_file.write_text(json.dumps(existing, indent=2))
|
| 636 |
-
|
| 637 |
-
logger.info(f"Metadata saved for podcast: {metadata.podcast_id}")
|
| 638 |
-
|
| 639 |
except Exception as e:
|
| 640 |
logger.error(f"Failed to save metadata: {e}")
|
| 641 |
|
| 642 |
def list_podcasts(self, limit: int = 10) -> List[PodcastMetadata]:
|
| 643 |
"""List generated podcasts"""
|
| 644 |
try:
|
|
|
|
| 645 |
data = json.loads(self.metadata_file.read_text())
|
| 646 |
podcasts = [PodcastMetadata(**item) for item in data[-limit:]]
|
| 647 |
-
return list(reversed(podcasts))
|
| 648 |
except Exception as e:
|
| 649 |
logger.error(f"Failed to list podcasts: {e}")
|
| 650 |
return []
|
|
@@ -652,6 +699,7 @@ SUMMARY:
|
|
| 652 |
def get_podcast(self, podcast_id: str) -> Optional[PodcastMetadata]:
|
| 653 |
"""Get specific podcast metadata"""
|
| 654 |
try:
|
|
|
|
| 655 |
data = json.loads(self.metadata_file.read_text())
|
| 656 |
for item in data:
|
| 657 |
if item.get('podcast_id') == podcast_id:
|
|
@@ -659,5 +707,4 @@ SUMMARY:
|
|
| 659 |
return None
|
| 660 |
except Exception as e:
|
| 661 |
logger.error(f"Failed to get podcast: {e}")
|
| 662 |
-
return None
|
| 663 |
-
|
|
|
|
| 1 |
import logging
|
|
|
|
|
|
|
|
|
|
| 2 |
from typing import List, Dict, Any, Optional
|
| 3 |
from dataclasses import dataclass, asdict
|
| 4 |
from datetime import datetime
|
| 5 |
from pathlib import Path
|
| 6 |
import re
|
| 7 |
+
import uuid
|
| 8 |
|
| 9 |
try:
|
| 10 |
from elevenlabs import VoiceSettings
|
|
|
|
| 16 |
import config
|
| 17 |
from services.llamaindex_service import LlamaIndexService
|
| 18 |
from services.llm_service import LLMService
|
| 19 |
+
from services.document_store_service import DocumentStoreService
|
| 20 |
|
| 21 |
logger = logging.getLogger(__name__)
|
| 22 |
|
| 23 |
@dataclass
|
| 24 |
class DocumentAnalysis:
|
| 25 |
"""Analysis results from document(s)"""
|
| 26 |
+
key_insights: List[str]
|
| 27 |
topics: List[str]
|
| 28 |
+
complexity_level: str
|
| 29 |
estimated_words: int
|
| 30 |
source_documents: List[str]
|
| 31 |
summary: str
|
|
|
|
| 33 |
@dataclass
|
| 34 |
class DialogueLine:
|
| 35 |
"""Single line of podcast dialogue"""
|
| 36 |
+
speaker: str
|
| 37 |
text: str
|
| 38 |
+
pause_after: float = 0.5
|
| 39 |
+
|
| 40 |
@dataclass
|
| 41 |
class PodcastScript:
|
| 42 |
"""Complete podcast script"""
|
|
|
|
| 46 |
style: str
|
| 47 |
|
| 48 |
def to_text(self) -> str:
|
|
|
|
| 49 |
lines = []
|
| 50 |
for line in self.dialogue:
|
| 51 |
lines.append(f"{line.speaker}: {line.text}")
|
|
|
|
| 81 |
class PodcastGeneratorService:
|
| 82 |
"""
|
| 83 |
Service for generating conversational podcasts from documents.
|
|
|
|
| 84 |
"""
|
| 85 |
|
|
|
|
| 86 |
WORDS_PER_MINUTE = 150
|
| 87 |
|
|
|
|
| 88 |
SCRIPT_PROMPTS = {
|
| 89 |
+
"conversational": """You are an expert podcast script writer. Create an engaging 2-host podcast discussing the provided documents.
|
| 90 |
|
| 91 |
+
DOCUMENT CONTENT:
|
| 92 |
+
{document_content}
|
| 93 |
+
|
| 94 |
+
KEY INSIGHTS:
|
| 95 |
+
{key_insights}
|
| 96 |
|
| 97 |
REQUIREMENTS:
|
| 98 |
- Duration: {duration_minutes} minutes (approximately {word_count} words)
|
| 99 |
- Style: Conversational, friendly, and accessible
|
| 100 |
- Format: Alternating dialogue between HOST1 and HOST2
|
| 101 |
+
- Make the content engaging and easy to understand
|
| 102 |
+
- Include natural transitions and enthusiasm
|
|
|
|
|
|
|
| 103 |
|
| 104 |
DIALOGUE FORMAT (strictly follow):
|
| 105 |
HOST1: [What they say]
|
| 106 |
HOST2: [What they say]
|
| 107 |
|
| 108 |
STRUCTURE:
|
| 109 |
+
1. Opening Hook (30 seconds): Grab attention
|
| 110 |
+
2. Introduction (1 minute): Set context
|
| 111 |
+
3. Main Discussion (70% of time): Deep dive into insights
|
| 112 |
+
4. Wrap-up (1 minute): Summarize key takeaways
|
|
|
|
|
|
|
| 113 |
|
| 114 |
Generate the complete podcast script now:""",
|
| 115 |
|
| 116 |
+
"educational": """Create an educational podcast discussing the provided documents.
|
| 117 |
|
| 118 |
+
DOCUMENT CONTENT:
|
| 119 |
+
{document_content}
|
| 120 |
+
|
| 121 |
+
KEY INSIGHTS:
|
| 122 |
+
{key_insights}
|
| 123 |
|
| 124 |
REQUIREMENTS:
|
| 125 |
- Duration: {duration_minutes} minutes (approximately {word_count} words)
|
| 126 |
- Style: Clear, methodical, educational
|
| 127 |
+
- HOST1 acts as teacher, HOST2 as curious learner
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
DIALOGUE FORMAT:
|
| 130 |
HOST1: [Expert explanation]
|
| 131 |
+
HOST2: [Clarifying question]
|
| 132 |
|
| 133 |
+
Generate the educational podcast script now:""",
|
| 134 |
|
| 135 |
+
"technical": """Create a technical podcast for an informed audience.
|
| 136 |
+
|
| 137 |
+
DOCUMENT CONTENT:
|
| 138 |
+
{document_content}
|
| 139 |
|
| 140 |
+
KEY INSIGHTS:
|
| 141 |
+
{key_insights}
|
| 142 |
|
| 143 |
REQUIREMENTS:
|
| 144 |
- Duration: {duration_minutes} minutes (approximately {word_count} words)
|
| 145 |
- Style: Professional, detailed, technically accurate
|
| 146 |
+
- HOST1 is expert, HOST2 is informed interviewer
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
DIALOGUE FORMAT:
|
| 149 |
HOST1: [Technical insight]
|
| 150 |
HOST2: [Probing question]
|
| 151 |
|
| 152 |
+
Generate the technical podcast script now:""",
|
| 153 |
|
| 154 |
+
"casual": """Create a fun, casual podcast discussing the documents.
|
| 155 |
+
|
| 156 |
+
DOCUMENT CONTENT:
|
| 157 |
+
{document_content}
|
| 158 |
|
| 159 |
+
KEY INSIGHTS:
|
| 160 |
+
{key_insights}
|
| 161 |
|
| 162 |
REQUIREMENTS:
|
| 163 |
- Duration: {duration_minutes} minutes (approximately {word_count} words)
|
| 164 |
- Style: Relaxed, humorous, energetic
|
| 165 |
+
- Make it entertaining while informative
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
DIALOGUE FORMAT:
|
| 168 |
HOST1: [Casual commentary]
|
| 169 |
HOST2: [Enthusiastic response]
|
| 170 |
|
| 171 |
+
Generate the casual podcast script now:"""
|
| 172 |
}
|
| 173 |
|
| 174 |
def __init__(
|
|
|
|
| 177 |
llm_service: LLMService,
|
| 178 |
elevenlabs_api_key: Optional[str] = None
|
| 179 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
self.config = config.config
|
| 181 |
self.llamaindex_service = llamaindex_service
|
| 182 |
self.llm_service = llm_service
|
| 183 |
|
| 184 |
+
# Get document store from llamaindex service
|
| 185 |
+
self.document_store = llamaindex_service.document_store
|
| 186 |
+
|
| 187 |
# Initialize ElevenLabs client
|
| 188 |
self.elevenlabs_client = None
|
| 189 |
if ELEVENLABS_AVAILABLE:
|
|
|
|
| 202 |
# Metadata database file
|
| 203 |
self.metadata_file = self.podcast_dir / "metadata_db.json"
|
| 204 |
self._ensure_metadata_db()
|
| 205 |
+
|
| 206 |
+
# Voice cache
|
| 207 |
+
self._voice_cache = {}
|
| 208 |
|
| 209 |
def _ensure_metadata_db(self):
|
| 210 |
"""Ensure metadata database exists"""
|
| 211 |
if not self.metadata_file.exists():
|
| 212 |
+
import json
|
| 213 |
self.metadata_file.write_text(json.dumps([], indent=2))
|
| 214 |
|
| 215 |
async def generate_podcast(
|
|
|
|
| 220 |
host1_voice: str = "Rachel",
|
| 221 |
host2_voice: str = "Adam"
|
| 222 |
) -> PodcastResult:
|
| 223 |
+
"""Generate a complete podcast from documents"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
start_time = datetime.now()
|
| 225 |
podcast_id = str(uuid.uuid4())
|
| 226 |
|
|
|
|
| 228 |
logger.info(f"Starting podcast generation {podcast_id}")
|
| 229 |
logger.info(f"Documents: {document_ids}, Style: {style}, Duration: {duration_minutes}min")
|
| 230 |
|
| 231 |
+
# Step 1: Retrieve and analyze documents
|
| 232 |
+
logger.info("Step 1: Retrieving and analyzing documents...")
|
| 233 |
analysis = await self.analyze_documents(document_ids)
|
| 234 |
|
| 235 |
# Step 2: Generate script
|
|
|
|
| 292 |
|
| 293 |
async def analyze_documents(self, document_ids: List[str]) -> DocumentAnalysis:
|
| 294 |
"""
|
| 295 |
+
Retrieve documents and extract key insights for podcast
|
|
|
|
|
|
|
|
|
|
| 296 |
|
| 297 |
+
FIXED: Now actually retrieves document content from document store
|
|
|
|
| 298 |
"""
|
| 299 |
+
try:
|
| 300 |
+
# Step 1: Retrieve actual documents from document store
|
| 301 |
+
logger.info(f"Retrieving {len(document_ids)} documents from store...")
|
| 302 |
+
documents = []
|
| 303 |
+
document_contents = []
|
| 304 |
+
|
| 305 |
+
for doc_id in document_ids:
|
| 306 |
+
doc = await self.document_store.get_document(doc_id)
|
| 307 |
+
if doc:
|
| 308 |
+
documents.append(doc)
|
| 309 |
+
document_contents.append(doc.content)
|
| 310 |
+
logger.info(f"Retrieved document: {doc.filename} ({len(doc.content)} chars)")
|
| 311 |
+
else:
|
| 312 |
+
logger.warning(f"Document {doc_id} not found in store")
|
| 313 |
+
|
| 314 |
+
if not documents:
|
| 315 |
+
raise ValueError(f"No documents found for IDs: {document_ids}")
|
| 316 |
+
|
| 317 |
+
# Step 2: Combine document content
|
| 318 |
+
combined_content = "\n\n---DOCUMENT SEPARATOR---\n\n".join(document_contents)
|
| 319 |
+
|
| 320 |
+
# Truncate if too long (keep first portion for context)
|
| 321 |
+
max_content_length = 15000 # Adjust based on your LLM context window
|
| 322 |
+
if len(combined_content) > max_content_length:
|
| 323 |
+
logger.warning(f"Content too long ({len(combined_content)} chars), truncating to {max_content_length}")
|
| 324 |
+
combined_content = combined_content[:max_content_length] + "\n\n[Content truncated...]"
|
| 325 |
+
|
| 326 |
+
# Step 3: Use LLM to analyze the content
|
| 327 |
+
analysis_prompt = f"""Analyze the following document(s) and provide:
|
| 328 |
+
|
| 329 |
+
1. The 5-7 most important insights or key points (be specific and detailed)
|
| 330 |
2. Main themes and topics covered
|
| 331 |
3. The overall complexity level (beginner/intermediate/advanced)
|
| 332 |
+
4. A comprehensive summary suitable for podcast discussion
|
| 333 |
|
| 334 |
+
DOCUMENTS:
|
| 335 |
+
{combined_content}
|
| 336 |
|
| 337 |
+
Provide a structured analysis optimized for creating an engaging podcast discussion.
|
| 338 |
+
Format your response as:
|
| 339 |
+
|
| 340 |
+
KEY INSIGHTS:
|
| 341 |
+
1. [First key insight]
|
| 342 |
+
2. [Second key insight]
|
| 343 |
+
...
|
| 344 |
+
|
| 345 |
+
TOPICS:
|
| 346 |
+
- [Topic 1]
|
| 347 |
+
- [Topic 2]
|
| 348 |
+
...
|
| 349 |
+
|
| 350 |
+
COMPLEXITY: [beginner/intermediate/advanced]
|
| 351 |
+
|
| 352 |
+
SUMMARY:
|
| 353 |
+
[Your comprehensive summary here]
|
| 354 |
+
"""
|
| 355 |
+
|
| 356 |
+
logger.info("Analyzing content with LLM...")
|
| 357 |
+
result = await self.llm_service.generate_text(
|
| 358 |
+
analysis_prompt,
|
| 359 |
+
max_tokens=2000,
|
| 360 |
+
temperature=0.7
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
# Step 4: Parse the structured response
|
| 364 |
+
insights = self._extract_insights(result)
|
| 365 |
+
topics = self._extract_topics(result)
|
| 366 |
+
complexity = self._determine_complexity(result)
|
| 367 |
+
summary = self._extract_summary(result)
|
| 368 |
+
|
| 369 |
+
logger.info(f"Analysis complete: {len(insights)} insights, {len(topics)} topics")
|
| 370 |
+
|
| 371 |
+
return DocumentAnalysis(
|
| 372 |
+
key_insights=insights[:7],
|
| 373 |
+
topics=topics,
|
| 374 |
+
complexity_level=complexity,
|
| 375 |
+
estimated_words=len(combined_content.split()),
|
| 376 |
+
source_documents=[doc.filename for doc in documents],
|
| 377 |
+
summary=summary or result[:500]
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
except Exception as e:
|
| 381 |
+
logger.error(f"Document analysis failed: {str(e)}", exc_info=True)
|
| 382 |
+
raise RuntimeError(f"Failed to analyze documents: {str(e)}")
|
| 383 |
+
|
| 384 |
+
def _extract_summary(self, text: str) -> str:
|
| 385 |
+
"""Extract summary section from analysis"""
|
| 386 |
+
try:
|
| 387 |
+
if "SUMMARY:" in text:
|
| 388 |
+
parts = text.split("SUMMARY:")
|
| 389 |
+
if len(parts) > 1:
|
| 390 |
+
summary = parts[1].strip()
|
| 391 |
+
# Take first 500 chars if too long
|
| 392 |
+
return summary[:500] if len(summary) > 500 else summary
|
| 393 |
+
except:
|
| 394 |
+
pass
|
| 395 |
+
|
| 396 |
+
# Fallback: take first few sentences
|
| 397 |
+
sentences = text.split('.')
|
| 398 |
+
return '. '.join(sentences[:3]) + '.'
|
| 399 |
|
| 400 |
def _extract_insights(self, text: str) -> List[str]:
|
| 401 |
"""Extract key insights from analysis text"""
|
| 402 |
insights = []
|
|
|
|
| 403 |
lines = text.split('\n')
|
| 404 |
+
|
| 405 |
+
in_insights_section = False
|
| 406 |
for line in lines:
|
| 407 |
line = line.strip()
|
| 408 |
+
|
| 409 |
+
if "KEY INSIGHTS:" in line.upper():
|
| 410 |
+
in_insights_section = True
|
| 411 |
+
continue
|
| 412 |
+
elif line.upper().startswith(("TOPICS:", "COMPLEXITY:", "SUMMARY:")):
|
| 413 |
+
in_insights_section = False
|
| 414 |
+
|
| 415 |
+
if in_insights_section and line:
|
| 416 |
+
# Match patterns like "1.", "2.", "-", "*", "•"
|
| 417 |
insight = re.sub(r'^\d+\.|\-|\*|•', '', line).strip()
|
| 418 |
+
if len(insight) > 20:
|
| 419 |
insights.append(insight)
|
| 420 |
|
| 421 |
+
# Fallback if no insights found
|
| 422 |
if not insights:
|
| 423 |
sentences = text.split('.')
|
| 424 |
insights = [s.strip() + '.' for s in sentences[:7] if len(s.strip()) > 20]
|
|
|
|
| 427 |
|
| 428 |
def _extract_topics(self, text: str) -> List[str]:
|
| 429 |
"""Extract main topics from analysis"""
|
| 430 |
+
topics = []
|
| 431 |
+
lines = text.split('\n')
|
| 432 |
+
|
| 433 |
+
in_topics_section = False
|
| 434 |
+
for line in lines:
|
| 435 |
+
line = line.strip()
|
| 436 |
+
|
| 437 |
+
if "TOPICS:" in line.upper():
|
| 438 |
+
in_topics_section = True
|
| 439 |
+
continue
|
| 440 |
+
elif line.upper().startswith(("KEY INSIGHTS:", "COMPLEXITY:", "SUMMARY:")):
|
| 441 |
+
in_topics_section = False
|
| 442 |
+
|
| 443 |
+
if in_topics_section and line:
|
| 444 |
+
topic = re.sub(r'^\-|\*|•', '', line).strip()
|
| 445 |
+
if len(topic) > 2:
|
| 446 |
+
topics.append(topic)
|
| 447 |
+
|
| 448 |
+
# Fallback: simple keyword extraction
|
| 449 |
+
if not topics:
|
| 450 |
+
common_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
|
| 451 |
+
words = text.lower().split()
|
| 452 |
+
word_freq = {}
|
| 453 |
+
|
| 454 |
+
for word in words:
|
| 455 |
+
word = re.sub(r'[^\w\s]', '', word)
|
| 456 |
+
if len(word) > 4 and word not in common_words:
|
| 457 |
+
word_freq[word] = word_freq.get(word, 0) + 1
|
| 458 |
+
|
| 459 |
+
top_topics = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:5]
|
| 460 |
+
topics = [topic[0].title() for topic in top_topics]
|
| 461 |
+
|
| 462 |
+
return topics[:5]
|
| 463 |
|
| 464 |
def _determine_complexity(self, text: str) -> str:
|
| 465 |
"""Determine content complexity level"""
|
| 466 |
text_lower = text.lower()
|
| 467 |
|
| 468 |
+
if "complexity:" in text_lower:
|
| 469 |
+
for level in ["beginner", "intermediate", "advanced"]:
|
| 470 |
+
if level in text_lower.split("complexity:")[1][:100]:
|
| 471 |
+
return level
|
| 472 |
+
|
| 473 |
+
# Heuristic based on keywords
|
| 474 |
if any(word in text_lower for word in ['basic', 'introduction', 'beginner', 'simple']):
|
| 475 |
return "beginner"
|
| 476 |
elif any(word in text_lower for word in ['advanced', 'complex', 'sophisticated', 'expert']):
|
|
|
|
| 484 |
style: str,
|
| 485 |
duration_minutes: int
|
| 486 |
) -> PodcastScript:
|
| 487 |
+
"""Generate podcast script from analysis"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 488 |
target_words = duration_minutes * self.WORDS_PER_MINUTE
|
| 489 |
|
| 490 |
+
# Prepare context with insights
|
| 491 |
+
insights_text = "\n".join(f"{i+1}. {insight}" for i, insight in enumerate(analysis.key_insights))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 492 |
|
| 493 |
+
# Get prompt template
|
| 494 |
prompt_template = self.SCRIPT_PROMPTS.get(style, self.SCRIPT_PROMPTS["conversational"])
|
| 495 |
|
| 496 |
+
# Fill template
|
| 497 |
prompt = prompt_template.format(
|
| 498 |
+
document_content=analysis.summary,
|
| 499 |
+
key_insights=insights_text,
|
| 500 |
duration_minutes=duration_minutes,
|
| 501 |
word_count=target_words
|
| 502 |
)
|
| 503 |
|
| 504 |
+
# Generate script
|
| 505 |
script_text = await self.llm_service.generate_text(
|
| 506 |
prompt,
|
| 507 |
+
max_tokens=target_words * 2,
|
| 508 |
+
temperature=0.8
|
| 509 |
)
|
| 510 |
|
| 511 |
+
# Parse into dialogue
|
| 512 |
dialogue = self._parse_script(script_text)
|
| 513 |
|
| 514 |
+
if not dialogue:
|
| 515 |
+
raise ValueError("Failed to parse script into dialogue lines")
|
| 516 |
+
|
| 517 |
word_count = sum(len(line.text.split()) for line in dialogue)
|
| 518 |
duration_estimate = word_count / self.WORDS_PER_MINUTE
|
| 519 |
|
| 520 |
return PodcastScript(
|
| 521 |
dialogue=dialogue,
|
| 522 |
+
total_duration_estimate=duration_estimate * 60,
|
| 523 |
word_count=word_count,
|
| 524 |
style=style
|
| 525 |
)
|
|
|
|
| 534 |
if not line:
|
| 535 |
continue
|
| 536 |
|
|
|
|
| 537 |
if line.startswith('HOST1:'):
|
| 538 |
text = line[6:].strip()
|
| 539 |
if text:
|
|
|
|
| 546 |
return dialogue
|
| 547 |
|
| 548 |
def _get_voice_id(self, voice_name: str) -> str:
|
| 549 |
+
"""Get voice ID from voice name"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
try:
|
| 551 |
+
# Use cache if available
|
| 552 |
+
if not self._voice_cache:
|
| 553 |
+
voices = self.elevenlabs_client.voices.get_all()
|
| 554 |
+
if not voices or not voices.voices:
|
| 555 |
+
raise RuntimeError("No voices available")
|
| 556 |
+
|
| 557 |
+
for voice in voices.voices:
|
| 558 |
+
self._voice_cache[voice.name.lower()] = voice.voice_id
|
| 559 |
+
|
| 560 |
+
# Exact match
|
| 561 |
+
if voice_name.lower() in self._voice_cache:
|
| 562 |
+
return self._voice_cache[voice_name.lower()]
|
| 563 |
+
|
| 564 |
+
# Partial match
|
| 565 |
+
for name, voice_id in self._voice_cache.items():
|
| 566 |
+
if voice_name.lower() in name:
|
| 567 |
+
logger.info(f"Partial match for '{voice_name}': {name}")
|
| 568 |
+
return voice_id
|
| 569 |
+
|
| 570 |
+
# Fallback
|
| 571 |
+
first_voice_id = list(self._voice_cache.values())[0]
|
| 572 |
+
logger.warning(f"Voice '{voice_name}' not found, using default")
|
| 573 |
+
return first_voice_id
|
| 574 |
|
| 575 |
except Exception as e:
|
| 576 |
+
logger.error(f"Could not fetch voices: {e}")
|
| 577 |
raise RuntimeError(f"Failed to get voice ID: {str(e)}")
|
| 578 |
|
| 579 |
async def synthesize_audio(
|
|
|
|
| 583 |
host1_voice: str,
|
| 584 |
host2_voice: str
|
| 585 |
) -> Path:
|
| 586 |
+
"""Synthesize audio with alternating voices"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 587 |
if not self.elevenlabs_client:
|
| 588 |
raise RuntimeError("ElevenLabs client not initialized")
|
| 589 |
|
| 590 |
audio_file = self.podcast_dir / f"{podcast_id}.mp3"
|
| 591 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 592 |
try:
|
| 593 |
+
# Get voice IDs
|
| 594 |
+
host1_voice_id = self._get_voice_id(host1_voice)
|
| 595 |
+
host2_voice_id = self._get_voice_id(host2_voice)
|
| 596 |
|
| 597 |
+
logger.info(f"HOST1: {host1_voice}, HOST2: {host2_voice}")
|
| 598 |
|
| 599 |
+
voice_map = {
|
| 600 |
+
"HOST1": host1_voice_id,
|
| 601 |
+
"HOST2": host2_voice_id
|
| 602 |
+
}
|
|
|
|
|
|
|
| 603 |
|
| 604 |
+
audio_chunks = []
|
| 605 |
+
|
| 606 |
+
# Process each line with correct voice
|
| 607 |
+
for i, line in enumerate(script.dialogue):
|
| 608 |
+
logger.info(f"Line {i+1}/{len(script.dialogue)}: {line.speaker}")
|
| 609 |
+
|
| 610 |
+
voice_id = voice_map.get(line.speaker, host1_voice_id)
|
| 611 |
+
|
| 612 |
+
audio_generator = self.elevenlabs_client.text_to_speech.convert(
|
| 613 |
+
voice_id=voice_id,
|
| 614 |
+
text=line.text,
|
| 615 |
+
model_id="eleven_multilingual_v2"
|
| 616 |
+
)
|
| 617 |
+
|
| 618 |
+
line_chunks = []
|
| 619 |
for chunk in audio_generator:
|
| 620 |
if chunk:
|
| 621 |
+
line_chunks.append(chunk)
|
| 622 |
+
|
| 623 |
+
if line_chunks:
|
| 624 |
+
audio_chunks.append(b''.join(line_chunks))
|
| 625 |
+
|
| 626 |
+
if not audio_chunks:
|
| 627 |
+
raise RuntimeError("No audio chunks generated")
|
| 628 |
+
|
| 629 |
+
full_audio = b''.join(audio_chunks)
|
| 630 |
+
|
| 631 |
+
with open(audio_file, 'wb') as f:
|
| 632 |
+
f.write(full_audio)
|
| 633 |
|
|
|
|
| 634 |
if audio_file.exists() and audio_file.stat().st_size > 1000:
|
| 635 |
+
logger.info(f"Audio created: {audio_file} ({audio_file.stat().st_size} bytes)")
|
| 636 |
return audio_file
|
| 637 |
else:
|
| 638 |
+
raise RuntimeError("Audio file too small or empty")
|
| 639 |
|
| 640 |
except Exception as e:
|
| 641 |
logger.error(f"Audio synthesis failed: {e}", exc_info=True)
|
| 642 |
+
raise RuntimeError(f"Failed to generate audio: {str(e)}")
|
| 643 |
|
| 644 |
def _create_metadata(
|
| 645 |
self,
|
|
|
|
| 652 |
style: str
|
| 653 |
) -> PodcastMetadata:
|
| 654 |
"""Create podcast metadata"""
|
|
|
|
| 655 |
title = f"Podcast: {analysis.topics[0] if analysis.topics else 'Document Discussion'}"
|
| 656 |
+
description = f"A {style} podcast discussing: {', '.join(analysis.source_documents)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 657 |
file_size_mb = audio_path.stat().st_size / (1024 * 1024) if audio_path.exists() else 0
|
| 658 |
|
| 659 |
+
llm_cost = (script.word_count / 1000) * 0.01
|
| 660 |
+
tts_cost = (script.word_count * 5 / 1000) * 0.30
|
|
|
|
| 661 |
|
| 662 |
return PodcastMetadata(
|
| 663 |
podcast_id=podcast_id,
|
| 664 |
title=title,
|
| 665 |
description=description,
|
| 666 |
+
source_documents=analysis.source_documents,
|
| 667 |
style=style,
|
| 668 |
duration_seconds=script.total_duration_estimate,
|
| 669 |
file_size_mb=file_size_mb,
|
| 670 |
+
voices={"host1": list(voices)[0] if len(voices) > 0 else "Rachel",
|
| 671 |
"host2": list(voices)[1] if len(voices) > 1 else "Adam"},
|
| 672 |
generated_at=datetime.now().isoformat(),
|
| 673 |
generation_cost={"llm_cost": llm_cost, "tts_cost": tts_cost, "total": llm_cost + tts_cost},
|
|
|
|
| 677 |
def _save_metadata(self, metadata: PodcastMetadata):
|
| 678 |
"""Save metadata to database"""
|
| 679 |
try:
|
| 680 |
+
import json
|
| 681 |
existing = json.loads(self.metadata_file.read_text())
|
|
|
|
|
|
|
| 682 |
existing.append(asdict(metadata))
|
|
|
|
|
|
|
| 683 |
self.metadata_file.write_text(json.dumps(existing, indent=2))
|
| 684 |
+
logger.info(f"Metadata saved: {metadata.podcast_id}")
|
|
|
|
|
|
|
| 685 |
except Exception as e:
|
| 686 |
logger.error(f"Failed to save metadata: {e}")
|
| 687 |
|
| 688 |
def list_podcasts(self, limit: int = 10) -> List[PodcastMetadata]:
|
| 689 |
"""List generated podcasts"""
|
| 690 |
try:
|
| 691 |
+
import json
|
| 692 |
data = json.loads(self.metadata_file.read_text())
|
| 693 |
podcasts = [PodcastMetadata(**item) for item in data[-limit:]]
|
| 694 |
+
return list(reversed(podcasts))
|
| 695 |
except Exception as e:
|
| 696 |
logger.error(f"Failed to list podcasts: {e}")
|
| 697 |
return []
|
|
|
|
| 699 |
def get_podcast(self, podcast_id: str) -> Optional[PodcastMetadata]:
|
| 700 |
"""Get specific podcast metadata"""
|
| 701 |
try:
|
| 702 |
+
import json
|
| 703 |
data = json.loads(self.metadata_file.read_text())
|
| 704 |
for item in data:
|
| 705 |
if item.get('podcast_id') == podcast_id:
|
|
|
|
| 707 |
return None
|
| 708 |
except Exception as e:
|
| 709 |
logger.error(f"Failed to get podcast: {e}")
|
| 710 |
+
return None
|
|
|