File size: 13,521 Bytes
fc49c8c
 
 
 
 
 
 
9b88b42
 
 
 
 
 
 
 
4cc5533
9f411df
fc49c8c
1c78117
 
 
 
fc49c8c
 
 
 
 
 
 
 
4cc5533
fc49c8c
 
 
 
 
 
 
 
 
 
 
9b88b42
fc49c8c
9b88b42
 
 
 
 
 
4cc5533
9f411df
fc49c8c
 
 
 
9b88b42
1c78117
 
 
 
9b88b42
 
 
 
 
 
 
 
 
 
 
 
 
151bd32
9b88b42
151bd32
9b88b42
 
151bd32
9b88b42
151bd32
9b88b42
 
151bd32
9b88b42
151bd32
9b88b42
 
 
 
 
 
 
 
 
 
 
 
1c78117
 
 
 
 
9b88b42
 
 
 
 
 
 
 
 
 
 
 
 
151bd32
9b88b42
151bd32
9b88b42
 
151bd32
9b88b42
151bd32
9b88b42
 
151bd32
9b88b42
151bd32
9b88b42
 
 
 
 
 
 
 
 
 
 
1c78117
 
 
 
9b88b42
 
 
 
 
 
 
 
 
 
 
 
 
151bd32
9b88b42
151bd32
9b88b42
 
 
 
 
 
 
 
1c78117
 
 
 
 
9b88b42
 
 
 
 
 
 
 
 
 
 
 
 
151bd32
9b88b42
151bd32
9b88b42
 
 
 
 
 
 
 
1c78117
 
 
 
 
9b88b42
 
 
 
 
 
 
 
 
 
 
 
151bd32
 
 
 
 
9b88b42
 
151bd32
9b88b42
 
151bd32
9b88b42
 
151bd32
9b88b42
 
 
 
 
 
 
 
 
1c78117
 
 
 
 
9b88b42
 
 
 
 
 
 
 
 
 
 
 
 
151bd32
9b88b42
151bd32
9b88b42
 
 
 
 
 
 
4cc5533
1c78117
 
 
 
 
4cc5533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c78117
 
 
 
 
9f411df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b88b42
fc49c8c
 
 
 
 
 
 
 
 
 
9b88b42
fc49c8c
 
 
 
 
 
 
 
 
 
 
9b88b42
 
 
 
fc49c8c
 
 
 
 
 
 
 
 
 
 
9b88b42
 
 
 
fc49c8c
 
 
 
 
 
 
 
9b88b42
 
 
 
fc49c8c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
"""MCP Router for Portfolio Intelligence Platform.

Orchestrates MCP servers for financial data and quantitative analysis.
"""

from typing import Dict, List, Any, Optional
import logging
import sys
import os

# Add backend directory to path for MCP imports
sys.path.insert(0, os.path.dirname(os.path.dirname(__file__)))

# Import all MCP servers
from backend.mcp_servers import yahoo_finance_mcp, fmp_mcp, trading_mcp, fred_mcp
from backend.mcp_servers import portfolio_optimizer_mcp, risk_analyzer_mcp, ensemble_predictor_mcp
from backend.mcp_servers import news_sentiment_mcp

# Import caching decorator
from backend.caching.decorators import cached_async
from backend.caching.redis_cache import CacheDataType

logger = logging.getLogger(__name__)


class MCPRouter:
    """Router for orchestrating multiple MCP servers.

    Manages connections to:
    - P0 (Week 1): Yahoo Finance, FMP, Trading-MCP, FRED, Portfolio Optimizer, Risk Analyzer
    - P1 (Week 2): Ensemble Predictor (Chronos + statistical models)
    """

    def __init__(self):
        """Initialise MCP router with configured servers."""
        self.servers: Dict[str, Any] = {}
        self._initialise_servers()

    def _initialise_servers(self):
        """Initialise connections to MCP servers."""
        logger.info("Initialising MCP servers")

        # Map MCP server modules
        self.servers = {
            "yahoo_finance": yahoo_finance_mcp,
            "fmp": fmp_mcp,
            "trading_mcp": trading_mcp,
            "fred": fred_mcp,
            "portfolio_optimizer": portfolio_optimizer_mcp,
            "risk_analyzer": risk_analyzer_mcp,
            "ensemble_predictor": ensemble_predictor_mcp,
            "news_sentiment": news_sentiment_mcp,  # 8th MCP - Enhancement #3
        }

        logger.info(f"Initialised {len(self.servers)} MCP servers")

    # Yahoo Finance MCP methods
    @cached_async(
        namespace="yahoo_finance",
        data_type=CacheDataType.MARKET_DATA,  # 60s TTL for real-time quotes
    )
    async def call_yahoo_finance_mcp(self, tool: str, params: Dict[str, Any]) -> Dict[str, Any]:
        """Call Yahoo Finance MCP tool.

        Args:
            tool: Tool name (get_quote, get_historical_data, get_fundamentals)
            params: Tool parameters

        Returns:
            Tool result
        """
        logger.debug(f"Calling Yahoo Finance MCP: {tool}")

        if tool == "get_quote":
            from backend.mcp_servers.yahoo_finance_mcp import get_quote, QuoteRequest
            request = QuoteRequest(**params)
            result = await get_quote.fn(request)

        elif tool == "get_historical_data":
            from backend.mcp_servers.yahoo_finance_mcp import get_historical_data, HistoricalRequest
            request = HistoricalRequest(**params)
            result = await get_historical_data.fn(request)

        elif tool == "get_fundamentals":
            from backend.mcp_servers.yahoo_finance_mcp import get_fundamentals, FundamentalsRequest
            request = FundamentalsRequest(**params)
            result = await get_fundamentals.fn(request)

        else:
            raise ValueError(f"Unknown Yahoo Finance tool: {tool}")

        # Convert Pydantic models to dicts
        if hasattr(result, 'model_dump'):
            return result.model_dump()
        elif isinstance(result, list):
            return [r.model_dump() if hasattr(r, 'model_dump') else r for r in result]
        return result

    # FMP MCP methods
    @cached_async(
        namespace="fmp",
        data_type=CacheDataType.HISTORICAL_DATA,  # 12 hours TTL
        ttl=21600,  # Override to 6 hours for company fundamentals
    )
    async def call_fmp_mcp(self, tool: str, params: Dict[str, Any]) -> Dict[str, Any]:
        """Call Financial Modeling Prep MCP tool.

        Args:
            tool: Tool name
            params: Tool parameters

        Returns:
            Tool result
        """
        logger.debug(f"Calling FMP MCP: {tool}")

        if tool == "get_company_profile":
            from backend.mcp_servers.fmp_mcp import get_company_profile, CompanyProfileRequest
            request = CompanyProfileRequest(**params)
            result = await get_company_profile.fn(request)

        elif tool == "get_financial_ratios":
            from backend.mcp_servers.fmp_mcp import get_financial_ratios, FinancialRatiosRequest
            request = FinancialRatiosRequest(**params)
            result = await get_financial_ratios.fn(request)

        elif tool == "get_key_metrics":
            from backend.mcp_servers.fmp_mcp import get_key_metrics, KeyMetricsRequest
            request = KeyMetricsRequest(**params)
            result = await get_key_metrics.fn(request)

        else:
            raise ValueError(f"Unknown FMP tool: {tool}")

        if hasattr(result, 'model_dump'):
            return result.model_dump()
        elif isinstance(result, list):
            return [r.model_dump() if hasattr(r, 'model_dump') else r for r in result]
        return result

    # Trading MCP methods
    @cached_async(
        namespace="trading",
        data_type=CacheDataType.HISTORICAL_DATA,  # 12 hours TTL for technical indicators
    )
    async def call_trading_mcp(self, tool: str, params: Dict[str, Any]) -> Dict[str, Any]:
        """Call Trading MCP tool.

        Args:
            tool: Tool name
            params: Tool parameters

        Returns:
            Tool result
        """
        logger.debug(f"Calling Trading MCP: {tool}")

        if tool == "get_technical_indicators":
            from backend.mcp_servers.trading_mcp import get_technical_indicators, TechnicalIndicatorsRequest
            request = TechnicalIndicatorsRequest(**params)
            result = await get_technical_indicators.fn(request)
        else:
            raise ValueError(f"Unknown Trading MCP tool: {tool}")

        if hasattr(result, 'model_dump'):
            return result.model_dump()
        return result

    # FRED MCP methods
    @cached_async(
        namespace="fred",
        data_type=CacheDataType.HISTORICAL_DATA,  # 12 hours default
        ttl=86400,  # Override to 24 hours for economic data (changes infrequently)
    )
    async def call_fred_mcp(self, tool: str, params: Dict[str, Any]) -> Dict[str, Any]:
        """Call FRED MCP tool.

        Args:
            tool: Tool name
            params: Tool parameters

        Returns:
            Tool result
        """
        logger.debug(f"Calling FRED MCP: {tool}")

        if tool == "get_economic_series":
            from backend.mcp_servers.fred_mcp import get_economic_series, SeriesRequest
            request = SeriesRequest(**params)
            result = await get_economic_series.fn(request)
        else:
            raise ValueError(f"Unknown FRED tool: {tool}")

        if hasattr(result, 'model_dump'):
            return result.model_dump()
        return result

    # Portfolio Optimizer MCP methods
    @cached_async(
        namespace="portfolio_optimizer",
        data_type=CacheDataType.PORTFOLIO_METRICS,  # 30 min default
        ttl=14400,  # Override to 4 hours for optimization results (computational, deterministic)
    )
    async def call_portfolio_optimizer_mcp(self, tool: str, params: Dict[str, Any]) -> Dict[str, Any]:
        """Call Portfolio Optimizer MCP tool.

        Args:
            tool: Tool name
            params: Tool parameters

        Returns:
            Tool result
        """
        logger.debug(f"Calling Portfolio Optimizer MCP: {tool}")

        from backend.mcp_servers.portfolio_optimizer_mcp import (
            optimize_hrp, optimize_black_litterman, optimize_mean_variance, OptimizationRequest
        )

        request = OptimizationRequest(**params)

        if tool == "optimize_hrp":
            result = await optimize_hrp.fn(request)

        elif tool == "optimize_black_litterman":
            result = await optimize_black_litterman.fn(request)

        elif tool == "optimize_mean_variance":
            result = await optimize_mean_variance.fn(request)

        else:
            raise ValueError(f"Unknown Portfolio Optimizer tool: {tool}")

        if hasattr(result, 'model_dump'):
            return result.model_dump()
        return result

    # Risk Analyzer MCP methods
    @cached_async(
        namespace="risk_analyzer",
        data_type=CacheDataType.PORTFOLIO_METRICS,  # 30 min default
        ttl=14400,  # Override to 4 hours for risk analysis (computational, deterministic)
    )
    async def call_risk_analyzer_mcp(self, tool: str, params: Dict[str, Any]) -> Dict[str, Any]:
        """Call Risk Analyzer MCP tool.

        Args:
            tool: Tool name
            params: Tool parameters

        Returns:
            Tool result
        """
        logger.debug(f"Calling Risk Analyzer MCP: {tool}")

        if tool == "analyze_risk":
            from backend.mcp_servers.risk_analyzer_mcp import analyze_risk, RiskAnalysisRequest
            request = RiskAnalysisRequest(**params)
            result = await analyze_risk.fn(request)
        else:
            raise ValueError(f"Unknown Risk Analyzer tool: {tool}")

        if hasattr(result, 'model_dump'):
            return result.model_dump()
        return result

    # Ensemble Predictor MCP methods
    @cached_async(
        namespace="ensemble_predictor",
        data_type=CacheDataType.HISTORICAL_DATA,  # 12 hours default
        ttl=21600,  # Override to 6 hours for ML forecasts (expensive computation)
    )
    async def call_ensemble_predictor_mcp(self, tool: str, params: Dict[str, Any]) -> Dict[str, Any]:
        """Call Ensemble Predictor MCP tool.

        Args:
            tool: Tool name
            params: Tool parameters

        Returns:
            Tool result
        """
        logger.debug(f"Calling Ensemble Predictor MCP: {tool}")

        if tool == "forecast_ensemble":
            from backend.mcp_servers.ensemble_predictor_mcp import forecast_ensemble, ForecastRequest
            request = ForecastRequest(**params)
            result = await forecast_ensemble.fn(request)
        else:
            raise ValueError(f"Unknown Ensemble Predictor tool: {tool}")

        if hasattr(result, 'model_dump'):
            return result.model_dump()
        return result

    @cached_async(
        namespace="news_sentiment",
        data_type=CacheDataType.USER_DATA,  # 2 hours default
        ttl=7200,  # 2 hours for news sentiment (balance freshness vs API costs)
    )
    async def call_news_sentiment_mcp(self, tool: str, params: Dict[str, Any]) -> Dict[str, Any]:
        """Call News Sentiment MCP tool.

        Args:
            tool: Tool name (get_news_with_sentiment)
            params: Tool parameters (ticker, days_back)

        Returns:
            TickerNewsWithSentiment with articles and sentiment scores
        """
        logger.debug(f"Calling News Sentiment MCP: {tool}")

        if tool == "get_news_with_sentiment":
            from backend.mcp_servers.news_sentiment_mcp import get_news_with_sentiment
            result = await get_news_with_sentiment.fn(
                ticker=params.get("ticker"),
                days_back=params.get("days_back", 7)
            )
        else:
            raise ValueError(f"Unknown News Sentiment tool: {tool}")

        if hasattr(result, 'model_dump'):
            return result.model_dump()
        return result

    # High-level helper methods
    async def fetch_market_data(self, tickers: List[str]) -> Dict[str, Any]:
        """Fetch market data for given tickers.

        Args:
            tickers: List of stock/asset tickers

        Returns:
            Market data from Yahoo Finance and other sources
        """
        logger.info(f"Fetching market data for {len(tickers)} tickers")
        return await self.call_yahoo_finance_mcp("get_quote", {"tickers": tickers})

    async def fetch_fundamentals(self, tickers: List[str]) -> Dict[str, Any]:
        """Fetch fundamental data from Financial Modeling Prep.

        Args:
            tickers: List of stock tickers

        Returns:
            Fundamental data (P/E, margins, revenue, etc.)
        """
        logger.info(f"Fetching fundamentals for {len(tickers)} tickers")
        results = {}
        for ticker in tickers:
            results[ticker] = await self.call_fmp_mcp("get_company_profile", {"ticker": ticker})
        return results

    async def fetch_technical_indicators(self, tickers: List[str]) -> Dict[str, Any]:
        """Fetch technical indicators from Trading-MCP.

        Args:
            tickers: List of stock tickers

        Returns:
            Technical indicators (RSI, MACD, Bollinger Bands, etc.)
        """
        logger.info(f"Fetching technical indicators for {len(tickers)} tickers")
        results = {}
        for ticker in tickers:
            results[ticker] = await self.call_trading_mcp("get_technical_indicators", {"ticker": ticker})
        return results

    async def fetch_macro_data(self) -> Dict[str, Any]:
        """Fetch macroeconomic data from FRED.

        Returns:
            Macroeconomic indicators (GDP, unemployment, inflation, etc.)
        """
        logger.info("Fetching macroeconomic data")
        results = {}
        for series_id in ["GDP", "UNRATE", "DFF"]:
            results[series_id] = await self.call_fred_mcp("get_economic_series", {"series_id": series_id})
        return results


# Global MCP router instance
mcp_router = MCPRouter()