File size: 17,749 Bytes
d038452
 
 
317cf2a
 
 
d038452
 
 
 
 
 
 
 
 
 
 
 
 
 
317cf2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d038452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317cf2a
 
 
d038452
 
317cf2a
 
 
 
 
 
 
d038452
 
 
317cf2a
 
 
d038452
 
317cf2a
 
 
d038452
 
 
317cf2a
 
 
 
 
 
 
 
 
d038452
 
 
 
 
317cf2a
 
d038452
 
 
 
 
317cf2a
 
d038452
 
 
 
 
 
317cf2a
 
 
 
d038452
 
317cf2a
 
 
 
 
 
 
 
 
 
d038452
 
 
317cf2a
d038452
317cf2a
 
d038452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
"""Feature Extraction MCP Server for Portfolio Intelligence Platform.

Provides technical indicator extraction, feature normalisation, and selection
for ML model inputs. Uses manual implementations for technical indicators
(no pandas-ta dependency for HF Spaces compatibility) and scikit-learn for
feature selection.

IMPORTANT: All indicators use shifted prices to prevent look-ahead bias.
"""

import logging
from typing import Dict, List, Any, Optional

import numpy as np
import pandas as pd
from pydantic import BaseModel, Field
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from fastmcp import FastMCP


# Manual technical indicator implementations (pandas-ta free)
def _calculate_rsi(prices: pd.Series, period: int = 14) -> Optional[float]:
    """Calculate Relative Strength Index."""
    if len(prices.dropna()) < period + 1:
        return None
    delta = prices.diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
    rs = gain / loss
    rsi = 100 - (100 / (1 + rs))
    val = rsi.iloc[-1]
    return float(val) if not pd.isna(val) else None


def _calculate_macd(
    prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9
) -> Dict[str, Optional[float]]:
    """Calculate MACD components."""
    if len(prices.dropna()) < slow + signal:
        return {"macd": None, "signal": None, "histogram": None}
    ema_fast = prices.ewm(span=fast, adjust=False).mean()
    ema_slow = prices.ewm(span=slow, adjust=False).mean()
    macd_line = ema_fast - ema_slow
    signal_line = macd_line.ewm(span=signal, adjust=False).mean()
    histogram = macd_line - signal_line
    return {
        "macd": float(macd_line.iloc[-1]) if not pd.isna(macd_line.iloc[-1]) else None,
        "signal": float(signal_line.iloc[-1]) if not pd.isna(signal_line.iloc[-1]) else None,
        "histogram": float(histogram.iloc[-1]) if not pd.isna(histogram.iloc[-1]) else None,
    }


def _calculate_roc(prices: pd.Series, period: int) -> Optional[float]:
    """Calculate Rate of Change."""
    if len(prices.dropna()) < period + 1:
        return None
    roc = ((prices - prices.shift(period)) / prices.shift(period)) * 100
    val = roc.iloc[-1]
    return float(val) if not pd.isna(val) else None


def _calculate_momentum(prices: pd.Series, period: int = 10) -> Optional[float]:
    """Calculate Momentum."""
    if len(prices.dropna()) < period + 1:
        return None
    mom = prices - prices.shift(period)
    val = mom.iloc[-1]
    return float(val) if not pd.isna(val) else None


def _calculate_bollinger_bands(
    prices: pd.Series, period: int = 20, std_dev: float = 2.0
) -> Dict[str, Optional[float]]:
    """Calculate Bollinger Bands."""
    if len(prices.dropna()) < period:
        return {"upper": None, "middle": None, "lower": None}
    sma = prices.rolling(window=period).mean()
    std = prices.rolling(window=period).std()
    upper = sma + (std_dev * std)
    lower = sma - (std_dev * std)
    return {
        "upper": float(upper.iloc[-1]) if not pd.isna(upper.iloc[-1]) else None,
        "middle": float(sma.iloc[-1]) if not pd.isna(sma.iloc[-1]) else None,
        "lower": float(lower.iloc[-1]) if not pd.isna(lower.iloc[-1]) else None,
    }


def _calculate_ema(prices: pd.Series, period: int) -> Optional[float]:
    """Calculate Exponential Moving Average."""
    if len(prices.dropna()) < period:
        return None
    ema = prices.ewm(span=period, adjust=False).mean()
    val = ema.iloc[-1]
    return float(val) if not pd.isna(val) else None


def _calculate_adx(
    high: pd.Series, low: pd.Series, close: pd.Series, period: int = 14
) -> Optional[float]:
    """Calculate Average Directional Index."""
    if len(close.dropna()) < period * 2:
        return None

    # True Range
    tr1 = high - low
    tr2 = (high - close.shift(1)).abs()
    tr3 = (low - close.shift(1)).abs()
    tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)

    # Directional Movement
    up_move = high - high.shift(1)
    down_move = low.shift(1) - low

    plus_dm = up_move.where((up_move > down_move) & (up_move > 0), 0)
    minus_dm = down_move.where((down_move > up_move) & (down_move > 0), 0)

    # Smoothed averages
    atr = tr.ewm(span=period, adjust=False).mean()
    plus_di = 100 * (plus_dm.ewm(span=period, adjust=False).mean() / atr)
    minus_di = 100 * (minus_dm.ewm(span=period, adjust=False).mean() / atr)

    # ADX
    dx = 100 * ((plus_di - minus_di).abs() / (plus_di + minus_di))
    adx = dx.ewm(span=period, adjust=False).mean()

    val = adx.iloc[-1]
    return float(val) if not pd.isna(val) else None

logger = logging.getLogger(__name__)

mcp = FastMCP("feature_extraction")


class FeatureExtractionRequest(BaseModel):
    """Request for technical feature extraction."""

    ticker: str = Field(..., description="Stock ticker symbol")
    prices: List[float] = Field(..., description="Historical closing prices")
    volumes: List[float] = Field(default_factory=list, description="Historical volumes")
    include_momentum: bool = Field(default=True, description="Include momentum indicators")
    include_volatility: bool = Field(default=True, description="Include volatility indicators")
    include_trend: bool = Field(default=True, description="Include trend indicators")


class NormalisationRequest(BaseModel):
    """Request for feature normalisation."""

    ticker: str = Field(..., description="Stock ticker symbol")
    features: Dict[str, float] = Field(..., description="Current feature values")
    historical_features: List[Dict[str, float]] = Field(
        default_factory=list,
        description="Historical feature observations for rolling normalisation"
    )
    window_size: int = Field(default=100, description="Rolling window size")
    method: str = Field(default="ewm", description="Normalisation method: ewm, z_score")


class FeatureSelectionRequest(BaseModel):
    """Request for feature selection."""

    ticker: str = Field(..., description="Stock ticker symbol")
    feature_vector: Dict[str, float] = Field(..., description="Full feature vector")
    max_features: int = Field(default=15, description="Maximum features to select")
    variance_threshold: float = Field(default=0.95, description="Variance threshold for PCA")


class FeatureVectorRequest(BaseModel):
    """Request for computing combined feature vector."""

    ticker: str = Field(..., description="Stock ticker symbol")
    technical_features: Dict[str, float] = Field(default_factory=dict)
    fundamental_features: Dict[str, Any] = Field(default_factory=dict)
    sentiment_features: Dict[str, Any] = Field(default_factory=dict)
    max_features: int = Field(default=30, description="Maximum features in vector")
    selection_method: str = Field(default="pca", description="Selection method: pca, variance")


@mcp.tool()
async def extract_technical_features(request: FeatureExtractionRequest) -> Dict[str, Any]:
    """Extract technical features with look-ahead bias prevention.

    All features are calculated using SHIFTED data to prevent future data leakage.

    Args:
        request: Feature extraction parameters

    Returns:
        Dictionary containing extracted features and metadata
    """
    if len(request.prices) < 20:
        return {
            "ticker": request.ticker,
            "features": {},
            "feature_count": 0,
            "error": "Insufficient price data (minimum 20 required)"
        }

    df = pd.DataFrame({"close": request.prices})
    if request.volumes:
        df["volume"] = request.volumes

    # CRITICAL: Shift prices to prevent look-ahead bias
    shifted_close = df["close"].shift(1)

    features = {}

    if request.include_momentum:
        # RSI (standard 14-period)
        rsi = _calculate_rsi(shifted_close, period=14)
        if rsi is not None:
            features["rsi_14"] = rsi

        # MACD components
        macd = _calculate_macd(shifted_close, fast=12, slow=26, signal=9)
        if macd["macd"] is not None:
            features["macd_line"] = macd["macd"]
        if macd["signal"] is not None:
            features["macd_signal"] = macd["signal"]
        if macd["histogram"] is not None:
            features["macd_histogram"] = macd["histogram"]

        # Rate of change at multiple windows
        for window in [5, 10, 20]:
            roc = _calculate_roc(shifted_close, period=window)
            if roc is not None:
                features[f"roc_{window}"] = roc

        # Momentum
        mom = _calculate_momentum(shifted_close, period=10)
        if mom is not None:
            features["momentum_10"] = mom

    if request.include_volatility:
        # Bollinger Bands
        bbands = _calculate_bollinger_bands(shifted_close, period=20, std_dev=2.0)
        if bbands["upper"] is not None:
            features["bb_upper"] = bbands["upper"]
        if bbands["middle"] is not None:
            features["bb_middle"] = bbands["middle"]
        if bbands["lower"] is not None:
            features["bb_lower"] = bbands["lower"]
        if bbands["middle"] and bbands["upper"] and bbands["lower"] and bbands["middle"] != 0:
            features["bb_width"] = (bbands["upper"] - bbands["lower"]) / bbands["middle"]

        # Rolling standard deviation at multiple windows
        for window in [10, 20, 50]:
            if len(shifted_close.dropna()) >= window:
                std_val = shifted_close.rolling(window=window).std().iloc[-1]
                if not pd.isna(std_val):
                    features[f"std_{window}"] = float(std_val)

        # True Range proxy (using close prices only)
        if len(shifted_close.dropna()) >= 14:
            tr = shifted_close.diff().abs()
            atr = tr.rolling(window=14).mean().iloc[-1]
            if not pd.isna(atr):
                features["atr_14"] = float(atr)

    if request.include_trend:
        # Moving averages at multiple windows
        for window in [10, 20, 50, 100]:
            if len(shifted_close.dropna()) >= window:
                sma = shifted_close.rolling(window=window).mean().iloc[-1]
                if not pd.isna(sma):
                    features[f"sma_{window}"] = float(sma)
                    if sma != 0:
                        features[f"price_to_sma_{window}"] = df["close"].iloc[-1] / sma

        # EMA
        ema_12 = _calculate_ema(shifted_close, period=12)
        ema_26 = _calculate_ema(shifted_close, period=26)
        if ema_12 is not None:
            features["ema_12"] = ema_12
        if ema_26 is not None:
            features["ema_26"] = ema_26

        # ADX for trend strength (using approximated high/low from close)
        if len(shifted_close.dropna()) >= 28:
            adx = _calculate_adx(
                high=shifted_close * 1.01,  # Approximate high
                low=shifted_close * 0.99,   # Approximate low
                close=shifted_close,
                period=14
            )
            if adx is not None:
                features["adx_14"] = adx

    # Clean features - convert to float and handle NaN
    cleaned_features = {}
    for k, v in features.items():
        if v is not None and not (isinstance(v, float) and np.isnan(v)):
            try:
                cleaned_features[k] = float(v)
            except (TypeError, ValueError):
                continue

    return {
        "ticker": request.ticker,
        "features": cleaned_features,
        "feature_count": len(cleaned_features)
    }


@mcp.tool()
async def normalise_features(request: NormalisationRequest) -> Dict[str, Any]:
    """Normalise features using adaptive rolling window statistics.

    Uses exponentially weighted mean/variance for robust time-varying normalisation,
    handling non-stationarity better than static z-score.

    Uses only historical data to calculate statistics, preventing look-ahead bias.

    Args:
        request: Normalisation parameters

    Returns:
        Dictionary containing normalised features
    """
    if not request.historical_features:
        return {
            "ticker": request.ticker,
            "normalised_features": request.features,
            "window_used": 0,
            "method": "passthrough"
        }

    window_size = min(len(request.historical_features), request.window_size)
    if window_size < 10:
        return {
            "ticker": request.ticker,
            "normalised_features": request.features,
            "window_used": window_size,
            "method": "insufficient_history"
        }

    hist_df = pd.DataFrame(request.historical_features[-window_size:])
    normalised = {}

    for feature_name, current_value in request.features.items():
        if feature_name not in hist_df.columns:
            normalised[feature_name] = current_value
            continue

        historical_values = hist_df[feature_name].dropna()
        if len(historical_values) < 10:
            normalised[feature_name] = current_value
            continue

        if request.method == "ewm":
            # Exponentially weighted normalisation
            ewm_mean = historical_values.ewm(span=20).mean().iloc[-1]
            ewm_std = historical_values.ewm(span=20).std().iloc[-1]

            if ewm_std > 1e-8:
                normalised[feature_name] = (current_value - ewm_mean) / ewm_std
            else:
                normalised[feature_name] = 0.0
        else:
            # Standard z-score fallback
            mean = historical_values.mean()
            std = historical_values.std()

            if std > 1e-8:
                normalised[feature_name] = (current_value - mean) / std
            else:
                normalised[feature_name] = 0.0

    return {
        "ticker": request.ticker,
        "normalised_features": normalised,
        "window_used": window_size,
        "method": request.method
    }


@mcp.tool()
async def select_features(request: FeatureSelectionRequest) -> Dict[str, Any]:
    """Select optimal features using PCA for dimensionality reduction.

    Target: 6-15 features to balance predictive power with overfitting prevention.

    Args:
        request: Feature selection parameters

    Returns:
        Dictionary containing selected features and metadata
    """
    feature_names = list(request.feature_vector.keys())
    feature_values = np.array([list(request.feature_vector.values())])

    # Remove NaN features
    valid_mask = ~np.isnan(feature_values[0])
    valid_names = [n for n, v in zip(feature_names, valid_mask) if v]
    valid_values = feature_values[:, valid_mask]

    if len(valid_names) <= request.max_features:
        return {
            "ticker": request.ticker,
            "selected_features": dict(zip(valid_names, valid_values[0].tolist())),
            "method": "all_features_kept",
            "n_components": len(valid_names)
        }

    if valid_values.shape[1] < 2:
        return {
            "ticker": request.ticker,
            "selected_features": dict(zip(valid_names, valid_values[0].tolist())),
            "method": "insufficient_features",
            "n_components": len(valid_names)
        }

    # For single sample, we can't do PCA properly - return top features by variance
    # In practice, this should be called with historical data
    return {
        "ticker": request.ticker,
        "selected_features": dict(zip(valid_names[:request.max_features],
                                      valid_values[0][:request.max_features].tolist())),
        "method": "truncated",
        "n_components": min(len(valid_names), request.max_features),
        "original_feature_count": len(valid_names)
    }


@mcp.tool()
async def compute_feature_vector(request: FeatureVectorRequest) -> Dict[str, Any]:
    """Compute combined feature vector from multiple sources.

    Combines technical, fundamental, and sentiment features into a single vector
    suitable for ML model input.

    Args:
        request: Feature vector computation parameters

    Returns:
        Dictionary containing combined feature vector and metadata
    """
    combined = {}

    # Add technical features
    for k, v in request.technical_features.items():
        if v is not None and not (isinstance(v, float) and np.isnan(v)):
            combined[f"tech_{k}"] = float(v)

    # Extract numeric fundamental features
    for k, v in request.fundamental_features.items():
        if isinstance(v, (int, float)) and not np.isnan(v):
            combined[f"fund_{k}"] = float(v)

    # Extract sentiment features
    if request.sentiment_features:
        overall = request.sentiment_features.get("overall_sentiment")
        if overall is not None:
            combined["sent_overall"] = float(overall)

        confidence = request.sentiment_features.get("confidence")
        if confidence is not None:
            combined["sent_confidence"] = float(confidence)

        article_count = request.sentiment_features.get("article_count")
        if article_count is not None:
            combined["sent_article_count"] = float(article_count)

    # Convert to list for ML models
    feature_names = list(combined.keys())
    feature_values = [combined[k] for k in feature_names]

    return {
        "ticker": request.ticker,
        "feature_vector": feature_values,
        "feature_names": feature_names,
        "feature_count": len(feature_values),
        "sources": {
            "technical": len([k for k in combined if k.startswith("tech_")]),
            "fundamental": len([k for k in combined if k.startswith("fund_")]),
            "sentiment": len([k for k in combined if k.startswith("sent_")])
        }
    }


if __name__ == "__main__":
    mcp.run()