Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import json | |
| import gradio as gr | |
| import numpy as np | |
| from model import Model | |
| DESCRIPTION = "# [StyleGAN-XL](https://github.com/autonomousvision/stylegan_xl)" | |
| def update_class_index(name: str) -> dict: | |
| if "imagenet" in name: | |
| return gr.Slider(maximum=999, visible=True) | |
| elif "cifar" in name: | |
| return gr.Slider(maximum=9, visible=True) | |
| else: | |
| return gr.Slider(visible=False) | |
| def get_sample_image_url(name: str) -> str: | |
| sample_image_dir = "https://huggingface.co/spaces/hysts/StyleGAN-XL/resolve/main/samples" | |
| return f"{sample_image_dir}/{name}.jpg" | |
| def get_sample_image_markdown(name: str) -> str: | |
| url = get_sample_image_url(name) | |
| if name == "imagenet": | |
| size = 128 | |
| class_index = "0-999" | |
| seed = "0" | |
| elif name == "cifar10": | |
| size = 32 | |
| class_index = "0-9" | |
| seed = "0-9" | |
| elif name == "ffhq": | |
| size = 256 | |
| class_index = "N/A" | |
| seed = "0-99" | |
| elif name == "pokemon": | |
| size = 256 | |
| class_index = "N/A" | |
| seed = "0-99" | |
| else: | |
| raise ValueError | |
| return f""" | |
| - size: {size}x{size} | |
| - class_index: {class_index} | |
| - seed: {seed} | |
| - truncation: 0.7 | |
| """ | |
| def load_class_names(name: str) -> list[str]: | |
| with open(f"labels/{name}_classes.json") as f: | |
| names = json.load(f) | |
| return names | |
| def get_class_name_df(name: str) -> list: | |
| names = load_class_names(name) | |
| return list(map(list, enumerate(names))) # type: ignore | |
| IMAGENET_NAMES = load_class_names("imagenet") | |
| CIFAR10_NAMES = load_class_names("cifar10") | |
| def update_class_name(model_name: str, index: int) -> dict: | |
| if "imagenet" in model_name: | |
| if index < len(IMAGENET_NAMES): | |
| value = IMAGENET_NAMES[index] | |
| else: | |
| value = "-" | |
| return gr.Textbox(value=value, visible=True) | |
| elif "cifar" in model_name: | |
| if index < len(CIFAR10_NAMES): | |
| value = CIFAR10_NAMES[index] | |
| else: | |
| value = "-" | |
| return gr.Textbox(value=value, visible=True) | |
| else: | |
| return gr.Textbox(visible=False) | |
| model = Model() | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Tabs(): | |
| with gr.TabItem("App"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Group(): | |
| model_name = gr.Dropdown(label="Model", choices=model.MODEL_NAMES, value=model.MODEL_NAMES[3]) | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.uint32).max, step=1, value=0) | |
| psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7) | |
| class_index = gr.Slider(label="Class Index", minimum=0, maximum=999, step=1, value=83) | |
| class_name = gr.Textbox( | |
| label="Class Label", value=IMAGENET_NAMES[class_index.value], interactive=False | |
| ) | |
| tx = gr.Slider(label="Translate X", minimum=-1, maximum=1, step=0.05, value=0) | |
| ty = gr.Slider(label="Translate Y", minimum=-1, maximum=1, step=0.05, value=0) | |
| angle = gr.Slider(label="Angle", minimum=-180, maximum=180, step=5, value=0) | |
| run_button = gr.Button() | |
| with gr.Column(): | |
| result = gr.Image(label="Result") | |
| with gr.TabItem("Sample Images"): | |
| with gr.Row(): | |
| model_name2 = gr.Dropdown( | |
| label="Model", | |
| choices=[ | |
| "imagenet", | |
| "cifar10", | |
| "ffhq", | |
| "pokemon", | |
| ], | |
| value="imagenet", | |
| ) | |
| with gr.Row(): | |
| text = get_sample_image_markdown(model_name2.value) | |
| sample_images = gr.Markdown(text) | |
| with gr.TabItem("Class Names"): | |
| with gr.Row(): | |
| dataset_name = gr.Dropdown( | |
| label="Dataset", | |
| choices=[ | |
| "imagenet", | |
| "cifar10", | |
| ], | |
| value="imagenet", | |
| ) | |
| with gr.Row(): | |
| df = get_class_name_df("imagenet") | |
| class_names = gr.Dataframe(value=df, col_count=2, headers=["Class Index", "Label"], interactive=False) | |
| model_name.change( | |
| fn=update_class_index, | |
| inputs=model_name, | |
| outputs=class_index, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| model_name.change( | |
| fn=update_class_name, | |
| inputs=[ | |
| model_name, | |
| class_index, | |
| ], | |
| outputs=class_name, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| class_index.change( | |
| fn=update_class_name, | |
| inputs=[ | |
| model_name, | |
| class_index, | |
| ], | |
| outputs=class_name, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| run_button.click( | |
| fn=model.set_model_and_generate_image, | |
| inputs=[ | |
| model_name, | |
| seed, | |
| psi, | |
| class_index, | |
| tx, | |
| ty, | |
| angle, | |
| ], | |
| outputs=result, | |
| api_name="run", | |
| ) | |
| model_name2.change( | |
| fn=get_sample_image_markdown, | |
| inputs=model_name2, | |
| outputs=sample_images, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| dataset_name.change( | |
| fn=get_class_name_df, | |
| inputs=dataset_name, | |
| outputs=class_names, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=10).launch() | |