File size: 9,013 Bytes
d16eb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# IMPORTANT: spaces must be imported first to avoid CUDA initialization issues
import spaces

# Standard library imports
import os

# Third-party imports (non-CUDA)
import numpy as np
from PIL import Image
import gradio as gr

# CUDA-related imports (must come after spaces)
import torch
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.utils import export_to_video

# Model configuration
MODEL_ID = "Wan-AI/Wan2.2-TI2V-5B-Diffusers"
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# Global pipeline variable
pipe = None

def initialize_pipeline():
    """Initialize the Wan2.2 pipeline"""
    global pipe
    if pipe is None:
        print("Loading Wan2.2-TI2V-5B model...")
        vae = AutoencoderKLWan.from_pretrained(
            MODEL_ID,
            subfolder="vae",
            torch_dtype=torch.float32
        )
        pipe = WanPipeline.from_pretrained(
            MODEL_ID,
            vae=vae,
            torch_dtype=dtype
        )
        pipe.to(device)
        print("Model loaded successfully!")
    return pipe

@spaces.GPU(duration=180)  # Allocate GPU for 3 minutes (max allowed for Pro)
def generate_video(
    prompt: str,
    image: Image.Image = None,
    width: int = 1280,
    height: int = 704,
    num_frames: int = 73,
    num_inference_steps: int = 35,
    guidance_scale: float = 5.0,
    seed: int = -1
):
    """
    Generate video from text prompt and optional image

    Args:
        prompt: Text description of the video to generate
        image: Optional input image for image-to-video generation
        width: Video width (default: 1280)
        height: Video height (default: 704)
        num_frames: Number of frames to generate (default: 73 for 3 seconds at 24fps)
        num_inference_steps: Number of denoising steps (default: 35 for faster generation)
        guidance_scale: Guidance scale for generation (default: 5.0)
        seed: Random seed for reproducibility (-1 for random)
    """
    try:
        # Initialize pipeline
        pipeline = initialize_pipeline()

        # Set seed for reproducibility
        if seed == -1:
            seed = torch.randint(0, 2**32 - 1, (1,)).item()
        generator = torch.Generator(device=device).manual_seed(seed)

        # Prepare generation parameters
        gen_params = {
            "prompt": prompt,
            "height": height,
            "width": width,
            "num_frames": num_frames,
            "guidance_scale": guidance_scale,
            "num_inference_steps": num_inference_steps,
            "generator": generator,
        }

        # Add image if provided (for image-to-video)
        if image is not None:
            gen_params["image"] = image

        # Generate video
        print(f"Generating video with prompt: {prompt}")
        print(f"Parameters: {width}x{height}, {num_frames} frames, seed: {seed}")

        output = pipeline(**gen_params).frames[0]

        # Export to video file
        output_path = "output.mp4"
        export_to_video(output, output_path, fps=24)

        return output_path, f"Video generated successfully! Seed used: {seed}"

    except Exception as e:
        error_msg = f"Error generating video: {str(e)}"
        print(error_msg)
        return None, error_msg

# Create Gradio interface
with gr.Blocks(title="Wan2.2 Video Generation") as demo:
    gr.Markdown(
        """
        # Wan2.2 Video Generation

        Generate high-quality videos from text prompts or images using Wan2.2-TI2V-5B model.
        This model supports both **Text-to-Video** and **Image-to-Video** generation at 720P/24fps.

        **Note:** Generation takes 2-3 minutes. Settings are optimized for Zero GPU 3-minute limit.
        """
    )

    with gr.Row():
        with gr.Column():
            # Input controls
            prompt_input = gr.Textbox(
                label="Prompt",
                placeholder="Describe the video you want to generate...",
                lines=3,
                value="Two anthropomorphic cats in comfy boxing gear fight on stage"
            )

            image_input = gr.Image(
                label="Input Image (Optional - for Image-to-Video)",
                type="pil",
                sources=["upload"]
            )

            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    width_input = gr.Slider(
                        label="Width",
                        minimum=512,
                        maximum=1920,
                        step=64,
                        value=1280
                    )
                    height_input = gr.Slider(
                        label="Height",
                        minimum=512,
                        maximum=1080,
                        step=64,
                        value=704
                    )

                num_frames_input = gr.Slider(
                    label="Number of Frames (more frames = longer video)",
                    minimum=25,
                    maximum=145,
                    step=24,
                    value=73,
                    info="73 frames ≈ 3 seconds at 24fps (optimized for Zero GPU limits)"
                )

                num_steps_input = gr.Slider(
                    label="Inference Steps (more steps = better quality, slower)",
                    minimum=20,
                    maximum=60,
                    step=5,
                    value=35
                )

                guidance_scale_input = gr.Slider(
                    label="Guidance Scale (higher = closer to prompt)",
                    minimum=1.0,
                    maximum=15.0,
                    step=0.5,
                    value=5.0
                )

                seed_input = gr.Number(
                    label="Seed (-1 for random)",
                    value=-1,
                    precision=0
                )

            generate_btn = gr.Button("Generate Video", variant="primary", size="lg")

        with gr.Column():
            # Output
            video_output = gr.Video(
                label="Generated Video",
                autoplay=True
            )
            status_output = gr.Textbox(
                label="Status",
                lines=2
            )

    # Examples
    gr.Examples(
        examples=[
            [
                "Two anthropomorphic cats in comfy boxing gear fight on stage",
                None,
                1280,
                704,
                73,
                35,
                5.0,
                42
            ],
            [
                "A serene underwater scene with colorful coral reefs and tropical fish swimming gracefully",
                None,
                1280,
                704,
                73,
                35,
                5.0,
                123
            ],
            [
                "A bustling futuristic city at night with neon lights and flying cars",
                None,
                1280,
                704,
                73,
                35,
                5.0,
                456
            ],
            [
                "A peaceful mountain landscape with snow-capped peaks and a flowing river",
                None,
                1280,
                704,
                73,
                35,
                5.0,
                789
            ],
        ],
        inputs=[
            prompt_input,
            image_input,
            width_input,
            height_input,
            num_frames_input,
            num_steps_input,
            guidance_scale_input,
            seed_input
        ],
        outputs=[video_output, status_output],
        fn=generate_video,
        cache_examples=False,
    )

    # Connect generate button
    generate_btn.click(
        fn=generate_video,
        inputs=[
            prompt_input,
            image_input,
            width_input,
            height_input,
            num_frames_input,
            num_steps_input,
            guidance_scale_input,
            seed_input
        ],
        outputs=[video_output, status_output]
    )

    gr.Markdown(
        """
        ## Tips for Best Results:
        - Use detailed, descriptive prompts
        - For image-to-video: Upload a clear image that matches your prompt
        - Higher inference steps = better quality but slower generation
        - Adjust guidance scale to balance creativity vs. prompt adherence
        - Use the same seed to reproduce results
        - Keep generation under 3 minutes to fit Zero GPU limits

        ## Model Information:
        - Model: Wan2.2-TI2V-5B (5B parameters)
        - Resolution: 720P (1280x704 or custom)
        - Frame Rate: 24 fps
        - Default Duration: 3 seconds (optimized for Zero GPU)
        - Generation Time: ~2-3 minutes on Zero GPU (with optimized settings)
        """
    )

# Launch the app
if __name__ == "__main__":
    demo.queue(max_size=20)
    demo.launch()